1887

Abstract

Previous work on the population structure of strains in Great Britain has identified highly successful clones which are expanding across the country. One such clone, designated type 17, differs from all other members of the complex in having a region of deletion, termed RDbovis(d)_0173, of seven genes between and . Three of these genes have functions annotated in lipid metabolism. To explore the molecular basis for the success of this clone, we examined the impact of this deletion on lipid metabolism. While type 17 isolates had similar lipid composition to other strains, their ability to incorporate propanoate into mycolic acids was remarkably low. When expressed as a reciprocal (the ratio of incorporation of label from acetate : propanoate into mycolic acids) the ratio was higher for all three type 17 field strains tested (mean: 18.90) than the values of 7.30 to 7.61 for other field strains (<0.002) and values <6.50 for all other strains in the complex tested. The label from propanoate was diverted to pyruvate, at significantly higher levels in type 17 than all other strains (<0.021). Complementation of type 17 with an integrating cosmid, IE471, carrying the orthologues of resulted in the ability of the recombinant strain to incorporate label from propanoate into mycolic acids in a manner similar to other strains. type 17 : : IE471 labelled pyruvate from propanoate about four times more slowly than the parent strain. Thus, RDbovis(d)_0173 results in a profound effect on carbon metabolism, providing the ability to compensate for the inactivation of the and genes, involved in pyruvate metabolism, that is seen in (but not in ). This shift in carbon metabolism may be a factor in the extraordinary clonal expansion reported for type 17.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022269-0
2008-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3731.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022269-0&mimeType=html&fmt=ahah

References

  1. Bange, F. C., Collins, F. M. & Jacobs, W. R., Jr ( 1999; ). Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis. Tuber Lung Dis 79, 171–180.[CrossRef]
    [Google Scholar]
  2. Banu, S., Gordon, S. V., Palmer, S., Islam, M. R., Ahmed, S., Alam, K. M., Cole, S. T. & Brosch, R. ( 2004; ). Genotypic analysis of Mycobacterium tuberculosis in Bangladesh and prevalence of the Beijing strain. J Clin Microbiol 42, 674–682.[CrossRef]
    [Google Scholar]
  3. Behr, M. A., Schroeder, B. G., Brinkman, J. N., Slayden, R. A. & Barry, C. E., III ( 2000; ). A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J Bacteriol 182, 3394–3399.[CrossRef]
    [Google Scholar]
  4. Besra, G. S. ( 1998; ). Preparation of cell-wall fractions from mycobacteria. In Mycobacteria Protocols, pp. 91–107. Edited by T. Parish & N. G. Stoker. Totowa, NJ, USA: Humana Press.
  5. Besra, G. S., Sievert, T., Lee, R. E., Slayden, R. A., Brennan, P. J. & Takayama, K. ( 1994; ). Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci U S A 91, 12735–12739.[CrossRef]
    [Google Scholar]
  6. Bloch, K. ( 1977; ). Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol 45, 1–84.
    [Google Scholar]
  7. Brosch, R., Gordon, S. V., Billault, A., Garnier, T., Eiglmeier, K., Soravito, C., Barrell, B. G. & Cole, S. T. ( 1998; ). Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66, 2221–2229.
    [Google Scholar]
  8. Chen, J. M., Alexander, D. C., Behr, M. A. & Liu, J. ( 2003; ). Mycobacterium bovis BCG vaccines exhibit defects in alanine and serine catabolism. Infect Immun 71, 708–716.[CrossRef]
    [Google Scholar]
  9. Converse, S. E., Mougous, J. D., Leavell, M. D., Leary, J. A., Bertozzi, C. R. & Cox, J. S. ( 2003; ). MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A 100, 6121–6126.[CrossRef]
    [Google Scholar]
  10. Dobson, G., Minnikin, D. E., Minnikin, S. M., Parlett, J. H. & Goodfellow, M. ( 1985; ). Systematic analysis of complex mycobacterial lipids. In Chemical Methods In Bacterial Systematics, pp. 237–265. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  11. Flick, P. K. & Bloch, K. ( 1975; ). Reversible inhibition of the fatty acid synthetase complex from Mycobacterium smegmatis by palmitoyl-coenzyme A. J Biol Chem 250, 3348–3351.
    [Google Scholar]
  12. Gagneux, S., DeRiemer, K., Van, T., Kato-Maeda, M., de Jong, B. C., Narayanan, S., Nicol, M., Niemann, S., Kremer, K. & other authors ( 2006; ). Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103, 2869–2873.[CrossRef]
    [Google Scholar]
  13. Garnier, T., Eiglmeier, K., Camus, J. C., Medina, N., Mansoor, H., Pryor, M., Duthoy, S., Grondin, S., Lacroix, C. & other authors ( 2003; ). The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100, 7877–7882.[CrossRef]
    [Google Scholar]
  14. Glickman, M. S., Cox, J. S. & Jacobs, W. R., Jr ( 2000; ). A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5, 717–727.[CrossRef]
    [Google Scholar]
  15. Glickman, M. S., Cahill, S. M. & Jacobs, W. R., Jr ( 2001; ). The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276, 2228–2233.[CrossRef]
    [Google Scholar]
  16. Goodfellow, M., Collins, M. D. & Minnikin, D. E. ( 1976; ). Thin-layer chromatographic analysis of mycolic acid and other long-chain components in whole-organism methanolysates of coryneform and related taxa. J Gen Microbiol 96, 351–358.[CrossRef]
    [Google Scholar]
  17. Gould, T. A., van de Langemheen, H., Munoz-Elias, E. J., McKinney, J. D. & Sacchettini, J. C. ( 2006; ). Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61, 940–947.[CrossRef]
    [Google Scholar]
  18. Guerin, C. ( 1980; ). The history of BCG. In BCG Vaccine: Tuberculosis–Cancer. Edited by S. Rosenthal. Littleton, MA, USA: PSG Publishing.
  19. Gutierrez, M. C., Brisse, S., Brosch, R., Fabre, M., Omais, B., Marmiesse, M., Supply, P. & Vincent, V. ( 2005; ). Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1, e5 [CrossRef]
    [Google Scholar]
  20. Henao-Tamayo, M., Junqueira-Kipnis, A. P., Ordway, D., Gonzales-Juarrero, M., Stewart, G. R., Young, D. B., Wilkinson, R. J., Basaraba, R. J. & Orme, I. M. ( 2007; ). A mutant of Mycobacterium tuberculosis lacking the 19-kDa lipoprotein Rv3763 is highly attenuated in vivo but retains potent vaccinogenic properties. Vaccine 25, 7153–7159.[CrossRef]
    [Google Scholar]
  21. Iram, S. H. & Cronan, J. E. ( 2005; ). Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J Biol Chem 280, 32148–32156.[CrossRef]
    [Google Scholar]
  22. Jetten, M. S. & Sinskey, A. J. ( 1995; ). Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15, 73–103.[CrossRef]
    [Google Scholar]
  23. Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper, S., Bunschoten, A., Molhuizen, H., Shaw, R. & other authors ( 1997; ). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35, 907–914.
    [Google Scholar]
  24. Keating, L. A., Wheeler, P. R., Mansoor, H., Inwald, J. K., Dale, J., Hewinson, R. G. & Gordon, S. V. ( 2005; ). The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56, 163–174.[CrossRef]
    [Google Scholar]
  25. Marrakchi, H., Bardou, F., Laneelle, M.-A. & Daffe, M. ( 2008; ). A comprehensive overview of mycolic acid structure and biosynthesis. In The Mycobacterial Cell Envelope, pp. 41–62. Edited by M. Daffé & J.-M. Reyrat. Washington, DC: American Society for Microbiology.
  26. McNeil, M., Daffé, M. & Brennan, P. J. ( 1990; ). Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem 265, 18200–18206.
    [Google Scholar]
  27. Minnikin, D. E., Kremer, L., Dover, L. G. & Besra, G. S. ( 2002; ). The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9, 545–553.[CrossRef]
    [Google Scholar]
  28. Mostowy, S., Inwald, J., Gordon, S., Martin, C., Warren, R., Kremer, K., Cousins, D. & Behr, M. A. ( 2005; ). Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187, 6386–6395.[CrossRef]
    [Google Scholar]
  29. Munoz-Elias, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. ( 2006; ). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60, 1109–1122.[CrossRef]
    [Google Scholar]
  30. Niederweis, M. ( 2003; ). Mycobacterial porins – new channel proteins in unique outer membranes. Mol Microbiol 49, 1167–1177.[CrossRef]
    [Google Scholar]
  31. Rainwater, D. L. & Kolattukudy, P. E. ( 1982; ). Isolation and characterization of acyl coenzyme A carboxylases from Mycobacterium tuberculosis and Mycobacterium bovis, which produce multiple methyl-branched mycocerosic acids. J Bacteriol 151, 905–911.
    [Google Scholar]
  32. Reed, M. B., Domenech, P., Manca, C., Su, H., Barczak, A. K., Kreiswirth, B. N., Kaplan, G. & Barry, C. E., III ( 2004; ). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87.[CrossRef]
    [Google Scholar]
  33. Savvi, S., Warner, D. F., Kana, B. D., McKinney, J. D., Mizrahi, V. & Dawes, S. S. ( 2008; ). Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 190, 3886–3895.[CrossRef]
    [Google Scholar]
  34. Sinsimer, D., Huet, G., Manca, C., Tsenova, L., Koo, M. S., Kurepina, N., Kana, B., Mathema, B., Marras, S. A. & other authors ( 2008; ). The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76, 3027–3036.[CrossRef]
    [Google Scholar]
  35. Smith, N. H., Dale, J., Inwald, J., Palmer, S., Gordon, S. V., Hewinson, R. G. & Smith, J. M. ( 2003; ). The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proc Natl Acad Sci U S A 100, 15271–15275.[CrossRef]
    [Google Scholar]
  36. Smith, N. H., Gordon, S. V., de la Rua-Domenech, R., Clifton-Hadley, R. S. & Hewinson, R. G. ( 2006; ). Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4, 670–681.[CrossRef]
    [Google Scholar]
  37. van Aalten, D. M., DiRusso, C. C. & Knudsen, J. ( 2001; ). The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. EMBO J 20, 2041–2050.[CrossRef]
    [Google Scholar]
  38. Wheeler, P. R. ( 2008; ). Analysis of lipid biosynthesis and location. In Mycobacteria Protocols, 2nd edn. Edited by T. Parish & A. Brown. Totowa, NJ: Humana Press (in press).
  39. Wheeler, P. R. & Anderson, P. M. ( 1996; ). Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+. Biochem J 318, 451–457.
    [Google Scholar]
  40. Wheeler, P. R. & Ratledge, C. ( 1988; ). Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. J Gen Microbiol 134, 2111–2121.
    [Google Scholar]
  41. Wheeler, P. R., Coldham, N. G., Keating, L., Gordon, S. V., Wooff, E. E., Parish, T. & Hewinson, R. G. ( 2005; ). Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic mycobacteria. J Biol Chem 280, 8069–8078.[CrossRef]
    [Google Scholar]
  42. Winder, C. L., Gordon, S. V., Dale, J., Hewinson, R. G. & Goodacre, R. ( 2006; ). Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: implications for genotype-phenotype links. Microbiology 152, 2757–2765.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022269-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022269-0
Loading

Data & Media loading...

Supplements

Unbound, non-polar lipid labelling data from all pulse-chase experiments [ Excel file] (554 kb) Mycolate labelling data from all experiments [ Excel file] (183 kb)

EXCEL

Unbound, non-polar lipid labelling data from all pulse-chase experiments [ Excel file] (554 kb) Mycolate labelling data from all experiments [ Excel file] (183 kb)

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error