1887

Abstract

Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein–fumarate and nitrate reduction regulator (CRP–FNR) family of transcriptional regulators that are encoded in the genome of DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from and promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for -chlorophenols, while -chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nucleotide changes from the optimal dehalobox sequence (TTAAT-N-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/021584-0
2008-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3686.html?itemId=/content/journal/micro/10.1099/mic.0.2008/021584-0&mimeType=html&fmt=ahah

References

  1. Anjum, M. F., Green, J. & Guest, J. R. ( 2000; ). YeiL, the third member of the CRP–FNR family in Escherichia coli. Microbiology 146, 3157–3170.
    [Google Scholar]
  2. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.
    [Google Scholar]
  3. Barnard, A., Wolfe, A. & Busby, S. ( 2004; ). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7, 102–108.[CrossRef]
    [Google Scholar]
  4. Batut, J., Daveran-Mingot, M. L., David, M., Jacobs, J., Garnerone, A. M. & Kahn, D. ( 1989; ). fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J 8, 1279–1286.
    [Google Scholar]
  5. Bauer, C. E., Elsen, S. & Bird, T. H. ( 1999; ). Mechanisms for redox control of gene expression. Annu Rev Microbiol 53, 495–523.[CrossRef]
    [Google Scholar]
  6. Bearson, S. M., Albrecht, J. A. & Gunsalus, R. P. ( 2002; ). Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol 2, 13 [CrossRef]
    [Google Scholar]
  7. Christiansen, N. & Ahring, B. K. ( 1996; ). Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46, 442–448.[CrossRef]
    [Google Scholar]
  8. Christiansen, N., Ahring, B. K., Wohlfarth, G. & Diekert, G. ( 1998; ). Purification and characterization of the 3-chloro-4-hydroxyphenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett 436, 159–162.[CrossRef]
    [Google Scholar]
  9. Diaz, E. & Prieto, M. A. ( 2000; ). Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11, 467–475.[CrossRef]
    [Google Scholar]
  10. Egland, P. G. & Harwood, C. S. ( 2000; ). HbaR, a 4-hydroxybenzoate sensor and FNR–CRP superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by Rhodopseudomonas palustris. J Bacteriol 182, 100–106.[CrossRef]
    [Google Scholar]
  11. Gábor, K., Veríssimo, C. S., Cyran, B. C., Ter Horst, P., Meijer, N. P., Smidt, H., de Vos, W. M. & van der Oost, J. ( 2006; ). Characterisation of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense. J Bacteriol 188, 2604–2613.[CrossRef]
    [Google Scholar]
  12. Gostick, D. O., Griffin, H. G., Shearman, C. A., Scott, C., Green, J., Gasson, M. J. & Guest, J. R. ( 1999; ). Two operons that encode FNR-like proteins in Lactococcus lactis. Mol Microbiol 31, 1523–1535.[CrossRef]
    [Google Scholar]
  13. Green, J., Scott, C. & Guest, J. R. ( 2001; ). Functional versatility in the CRP–FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 44, 1–34.
    [Google Scholar]
  14. Grimm, A. C. & Harwood, C. S. ( 1999; ). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181, 3310–3316.
    [Google Scholar]
  15. Harwood, C. S., Nichols, N. N., Kim, M. K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479–6488.
    [Google Scholar]
  16. Hurles, M. ( 2004; ). Gene duplication: the genomic trade in spare parts. PLoS Biol 2, E206 [CrossRef]
    [Google Scholar]
  17. Israelsen, H., Madsen, S. M., Vrang, A., Hansen, E. B. & Johansen, E. ( 1995; ). Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61, 2540–2547.
    [Google Scholar]
  18. Janssen, D. B., Dinkla, I. J., Poelarends, G. J. & Terpstra, P. ( 2005; ). Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7, 1868–1882.[CrossRef]
    [Google Scholar]
  19. Joyce, M. G., Levy, C., Gábor, K., Pop, S. M., Biehl, B. D., Doukov, T. I., Ryter, J. M., Mazon, H., Smidt, H. & other authors ( 2006; ). CprK crystal structures reveal mechanism for transcriptional control of halorespiration. J Biol Chem 281, 28318–28325.[CrossRef]
    [Google Scholar]
  20. Kolb, A., Busby, S., Buc, H., Garges, S. & Adhya, S. ( 1993; ). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62, 749–795.[CrossRef]
    [Google Scholar]
  21. Korner, H., Sofia, H. J. & Zumft, W. G. ( 2003; ). Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27, 559–592.[CrossRef]
    [Google Scholar]
  22. Madsen, T. & Licht, D. ( 1992; ). Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58, 2874–2878.
    [Google Scholar]
  23. Mazon, H., Gábor, K., Leys, D., Heck, A. J., van der Oost, J. & van den Heuvel, R. H. ( 2007; ). Transcriptional activation by CprK1 is regulated by protein structural changes induced by effector binding and redox state. J Biol Chem 282, 11281–11290.[CrossRef]
    [Google Scholar]
  24. McGinnis, S. & Madden, T. L. ( 2004; ). blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32, W20–W25
    [Google Scholar]
  25. Mesa, S., Hennecke, H. & Fischer, H. M. ( 2006; ). A multitude of CRP/FNR-like transcription proteins in Bradyrhizobium japonicum. Biochem Soc Trans 34, 156–159.[CrossRef]
    [Google Scholar]
  26. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II ( 1997; ). GeneDoc: analysis and visualization of genetic variation. EMBnet.news 4, (2). 1–4.
    [Google Scholar]
  27. Parales, R. E. & Harwood, C. S. ( 2002; ). Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5, 266–273.[CrossRef]
    [Google Scholar]
  28. Pop, S. M., Kolarik, R. J. & Ragsdale, S. W. ( 2004; ). Regulation of anaerobic dehalorespiration by the transcriptional activator CprK. J Biol Chem 279, 49910–49918.[CrossRef]
    [Google Scholar]
  29. Schell, M. A. ( 1985; ). Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene 36, 301–309.[CrossRef]
    [Google Scholar]
  30. Schneider, T. D. & Stephens, R. M. ( 1990; ). Sequence Logos: a new way to display consensus sequences. Nucleic Acids Res 18, 6097–6100.[CrossRef]
    [Google Scholar]
  31. Scott, C., Partridge, J. D., Stephenson, J. R. & Green, J. ( 2003; ). DNA target sequence and FNR-dependent gene expression. FEBS Lett 541, 97–101.[CrossRef]
    [Google Scholar]
  32. Smidt, H. & de Vos, W. M. ( 2004; ). Anaerobic microbial dehalogenation. Annu Rev Microbiol 58, 43–73.[CrossRef]
    [Google Scholar]
  33. Smidt, H., van Leest, M., van der Oost, J. & de Vos, W. M. ( 2000; ). Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans. J Bacteriol 182, 5683–5691.[CrossRef]
    [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  35. Utkin, I., Dalton, D. D. & Wiegel, J. ( 1995; ). Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61, 346–351.
    [Google Scholar]
  36. Van der Meer, J. R. & Sentchilo, V. ( 2003; ). Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14, 248–254.[CrossRef]
    [Google Scholar]
  37. Van Eekert, M. H. & Schraa, G. ( 2001; ). The potential of anaerobic bacteria to degrade chlorinated compounds. Water Sci Technol 44, 49–56.
    [Google Scholar]
  38. Van Spanning, R. J., De Boer, A. P., Reijnders, W. N., Westerhoff, H. V., Stouthamer, A. H. & Van der Oost, J. ( 1997; ). FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol 23, 893–907.[CrossRef]
    [Google Scholar]
  39. Veldman, R., Reijnders, W. N. & Van Spanning, R. J. ( 2006; ). Specificity of FNR-type regulators in Paracoccus denitrificans. Biochem Soc Trans 34, 94–96.[CrossRef]
    [Google Scholar]
  40. Villemur, R., Saucier, M., Gauthier, A. & Beaudet, R. ( 2002; ). Occurrence of several genes encoding putative reductive dehalogenases in Desulfitobacterium hafniense/frappieri and Dehalococcoides ethenogenes. Can J Microbiol 48, 697–706.[CrossRef]
    [Google Scholar]
  41. Vollack, K. U., Hartig, E., Korner, H. & Zumft, W. G. ( 1999; ). Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 31, 1681–1694.[CrossRef]
    [Google Scholar]
  42. Webre, D. J., Wolanin, P. M. & Stock, J. B. ( 2004; ). Modulated receptor interactions in bacterial transmembrane signaling. Trends Cell Biol 14, 478–482.[CrossRef]
    [Google Scholar]
  43. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/021584-0
Loading
/content/journal/micro/10.1099/mic.0.2008/021584-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error