1887

Abstract

The HtrA (DegP) protein from is a periplasmic protease whose function is to protect cells from the deleterious effects of various stress conditions. At temperatures below 28 °C the proteolytic activity of HtrA was regarded as negligible and it was believed that the protein mainly plays the role of a chaperone. In the present work we provide evidence that HtrA can in fact act as a protease at low temperatures. Under folding stress, caused by disturbances in the disulfide bond formation, the lack of proteolytic activity of HtrA lowered the survival rates of mutant strains deprived of a functional DsbA/DsbB oxidoreductase system. HtrA degraded efficiently the unfolded, reduced alkaline phosphatase at 20 °C, both and . The cleavage was most efficient in the case of HtrA deprived of its internal S–S bond; therefore we expect that the reduction of HtrA may play a regulatory role in proteolysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/020487-0
2008-12-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3649.html?itemId=/content/journal/micro/10.1099/mic.0.2008/020487-0&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Kamitani S., Kusukawa N., Ito K.. 1992; In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA ( ppfA) gene product. J Biol Chem267:22440–22445
    [Google Scholar]
  2. Bardwell J. C., McGovern K., Beckwith J.. 1991; Identification of a protein required for disulfide bond formation in vivo. Cell67:581–589
    [Google Scholar]
  3. CastilloKeller M., Misra R.. 2003; Protease deficient DegP suppresses lethal effects of a mutant OmpC protein by its capture. J Bacteriol185:148–157
    [Google Scholar]
  4. Clausen T., Southan C., Ehrmann M.. 2002; The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell10:443–455
    [Google Scholar]
  5. Dorel C., Lejeune P., Rodrigue A.. 2006; The Cpx system of Escherichia coli, a strategic signalling pathway for confronting adverse conditions and for settling biofilm communities?. Res Microbiol157:306–314
    [Google Scholar]
  6. Hiniker A., Bardwell J. C. A.. 2004; In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem279:12967–12973
    [Google Scholar]
  7. Iwanczyk J., Damjanovic D., Kooistra J., Leong V., Jomaa A., Ghirlando R., Ortega J.. 2007; The role of the PDZ domains in Escherichia coli DegP protein. J Bacteriol189:3176–3186
    [Google Scholar]
  8. Jakob U., Muse W., Eser M., Bardwell J. C. A.. 1999; Chaperone activity with a redox switch. Cell96:341–352
    [Google Scholar]
  9. Jomaa A., Damianovic D., Leong V., Ghirlando R., Iwanczyk J., Ortega J.. 2007; The inner cavity of Escherichia coli DegP protein is not essential for molecular chaperone and proteolytic activity. J Bacteriol189:706–716
    [Google Scholar]
  10. Jones C. H., Dexter P., Evans A. K., Liu C., Hultgren S. J., Hruby D. E.. 2002; Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol184:5762–5771
    [Google Scholar]
  11. Kishigami S., Akiyama Y., Ito K.. 1995; Redox states of DsbA in the periplasm of Escherichia coli. FEBS Lett364:55–58
    [Google Scholar]
  12. Krojer T., Garrido-Franco M., Huber R., Ehrmann M., Clausen T.. 2002; Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature416:455–459
    [Google Scholar]
  13. Krojer T., Sawa J., Schafer E., Saibil H., Ehrmann M., Clausen T.. 2008; Structural basis for the regulated protease and chaperone function of DegP. Nature453:885–890
    [Google Scholar]
  14. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  15. Lipinska B., Fayet O., Baird L., Georgopoulos C.. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol171:1574–1584
    [Google Scholar]
  16. Misra R., Castillo Keller M., Deng M.. 2000; Overexpression of protease-deficient DegPS210A rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J Bacteriol182:4882–4888
    [Google Scholar]
  17. Missiakas D., Raina S.. 1997; Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways. Trends Biochem Sci22:59–63
    [Google Scholar]
  18. Munson L., Fall R. R.. 1978; Purification and characterization of Escherichia coli alkaline phosphatase. Biochem Educ3:100–105
    [Google Scholar]
  19. Oberfelder R.. 1993; Detection of proteins on filters by enzymatic methods. In Methods in Nonradioactive Detection, pp83–85 Edited by Howard G. C. Norwalk, CT: Appleton & Lange;
    [Google Scholar]
  20. Raina S., Missiakas D., Georgopoulos C.. 1995; The rpoE gene encoding the σ E ( σ 24) heat shock sigma factor of Escherichia coli. EMBO J14:1043–1055
    [Google Scholar]
  21. Sardesai A. A., Genevaux P., Schwager F., Ang D., Georgopoulos C.. 2003; The OmpL porin does not modulate redox potential in the periplasmic space of Escherichia coli. EMBO J22:1461–1466
    [Google Scholar]
  22. Savageau M. A.. 1983; Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat122:732–744
    [Google Scholar]
  23. Schlieker C., Bukau B., Mogk A.. 2002; Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol96:13–21
    [Google Scholar]
  24. Skorko-Glonek J., Krzewski K., Lipińska B., Bertoli E., Tanfani F.. 1995; Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J Biol Chem270:11140–11146
    [Google Scholar]
  25. Skorko-Glonek J., Lipinska B., Krzewski K., Zolese G., Bertoli E., Tanfani F.. 1997; HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J Biol Chem272:8974–8982
    [Google Scholar]
  26. Skorko-Glonek J., Zurawa D., Kuczwara E., Wozniak M., Wypych Z., Lipinska B.. 1999; Escherichia coli heat shock HtrA protease participates in the defense against oxidative stress. Mol Gen Genet262:342–350
    [Google Scholar]
  27. Skorko-Glonek J., Zurawa D., Tanfani F., Scirè A., Wawrzynów A., Narkiewicz J., Bertoli E., Lipinska B.. 2003; The N-terminal region of HtrA heat shock protease from Escherichia coli is essential for stabilization of HtrA primary structure and maintaining of its oligomeric structure. Biochim Biophys Acta 1649;171–182
    [Google Scholar]
  28. Skorko-Glonek J., Sobiecka-Szkatula A., Lipinska B.. 2006; Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli. Acta Biochim Pol53:585–589
    [Google Scholar]
  29. Souza V., Castillo A., Eguiarte L.. 2002; The evolutionary ecology of Escherichia coli. Am Sci90:332–341
    [Google Scholar]
  30. Spiess C., Beil A., Ehrmann M.. 1999; A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell97:339–347
    [Google Scholar]
  31. Wickner S., Maurizi M. R., Gottesman S.. 1999; Posttranslational quality control: folding, refolding, and degrading proteins. Science286:1888–1893
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/020487-0
Loading
/content/journal/micro/10.1099/mic.0.2008/020487-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error