1887

Abstract

The effect of different carbon sources on the expression of tricarboxylic acid (TCA) cycle genes, along with glyoxylate bypass genes, in was determined. All TCA cycle genes were coordinately expressed in medium containing acetate. Growth in the presence of acetate gave rise to abundant expression of most TCA cycle genes, with the level of transcript being the highest. However, when the cells entered the stationary phase triggered by acetate exhaustion, all genes were repressed, except and , which were slightly induced. Acetate withdrawal from the growth medium during the exponential phase also led to rapid repression of most TCA cycle genes and a corresponding twofold increase in the expression of , which were strongly induced by citrate and succinate. In addition, glucose depletion during the stationary phase led to a corresponding 8–20-fold induction of the , and genes. Addition of glucose to acetate medium resulted in about 10-fold induction of . The strong dependence of TCA cycle and glyoxylate bypass and expression on carbon source availability was confirmed and the regulatory system will be studied precisely.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019828-0
2008-10-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3073.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019828-0&mimeType=html&fmt=ahah

References

  1. Arndt A., Eikmanns B. J.. 2007; The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol189:7408–7416
    [Google Scholar]
  2. Bott M.. 2007; Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol15:417–425
    [Google Scholar]
  3. Bruckner R., Titgemeyer F.. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett209:141–148
    [Google Scholar]
  4. Brune I., Werner H., Huser A., Kalinowski J., Puhler A., Tauch A.. 2006; The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics7:21
    [Google Scholar]
  5. Bustin S. A.. 2002; Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol29:23–39
    [Google Scholar]
  6. Cox D. P., Hanson R. S.. 1968; Catabolite repression of aconitate hydratase in Bacillus subtilis. Biochim Biophys Acta158:36–44
    [Google Scholar]
  7. Cramer A., Gerstmeir R., Schaffer S., Bott M., Eikmanns B. J.. 2006; Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol188:2554–2567
    [Google Scholar]
  8. Cunningham L., Gruer M. J., Guest J. R.. 1997; Transcriptional regulation of the aconitase genes ( acnA and acnB) of Escherichia coli. Microbiology143:3795–3805
    [Google Scholar]
  9. Dover L. G., Cerdeno-Tarraga A. M., Pallen M. J., Parkhill J., Besra G. S.. 2004; Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev28:225–250
    [Google Scholar]
  10. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Ludtke K. U., Sahm H.. 1994; Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology140:1817–1828
    [Google Scholar]
  11. Eikmanns B. J., Rittmann D., Sahm H.. 1995; Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol177:774–782
    [Google Scholar]
  12. Eraso P., Gancedo J. M.. 1984; Catabolite repression in yeasts is not associated with low levels of cAMP. Eur J Biochem141:195–198
    [Google Scholar]
  13. Fouet A., Sonenshein A. L.. 1990; A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J Bacteriol172:835–844
    [Google Scholar]
  14. Fouet A., Jin S. F., Raffel G., Sonenshein A. L.. 1990; Multiple regulatory sites in the Bacillus subtilis citB promoter region. J Bacteriol172:5408–5415
    [Google Scholar]
  15. Funke G., von Graevenitz A., Clarridge J. E. III, Bernard K. A.. 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev10:125–159
    [Google Scholar]
  16. Genda T., Nakamatsu T., Ozak H.. 2003; Purification and characterization of malate dehydrogenase from Corynebacterium glutamicum. J Biosci Bioeng95:562–566
    [Google Scholar]
  17. Genda T., Watabe S., Ozaki H.. 2006; Purification and characterization of fumarase from Corynebacterium glutamicum. Biosci Biotechnol Biochem70:1102–1109
    [Google Scholar]
  18. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J.. 2003; Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol104:99–122
    [Google Scholar]
  19. Gerstmeir R., Cramer A., Dangel P., Schaffer S., Eikmanns B. J.. 2004; RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol186:2798–2809
    [Google Scholar]
  20. Gruer M. J., Guest J. R.. 1994; Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology140:2531–2541
    [Google Scholar]
  21. Gruer M. J., Bradbury A. J., Guest J. R.. 1997; Construction and properties of aconitase mutants of Escherichia coli. Microbiology143:1837–1846
    [Google Scholar]
  22. Han S. O., Inui M., Yukawa H.. 2007; Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology153:2190–2202
    [Google Scholar]
  23. Han S. O., Inui M., Yukawa H.. 2008; Transcription of Corynebacterium glutamicum genes involved in tricarboxylic acid cycle and glyoxylate cycle. J Mol Microbiol BiotechnolFeb20: [Epub ahead of print]
    [Google Scholar]
  24. Hanson R. S., Cox D. P.. 1967; Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol93:1777–1787
    [Google Scholar]
  25. Hayashi M., Mizoguchi H., Shiraishi N., Obayashi M., Nakagawa S., Imai J., Watanabe S., Ota T., Ikeda M.. 2002; Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem66:1337–1344
    [Google Scholar]
  26. Jin S., Sonenshein A. L.. 1994; Transcriptional regulation of Bacillus subtilis citrate synthase genes. J Bacteriol176:4680–4690
    [Google Scholar]
  27. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25
    [Google Scholar]
  28. Kim H. J., Kim T. H., Kim Y., Lee H. S.. 2004; Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol186:3453–3460
    [Google Scholar]
  29. Kinoshita S., Tanaka K.. 1972; Glutamic acid. In The Microbial Production of Amino Acids pp263–324 Edited by Yamada K.. New York: John Wiley;
    [Google Scholar]
  30. Kinoshita S., Udaka S., Shimono M.. 1957; Studies on the amino acid fermentation Part I. Production of l-glutamic acid by various microorganisms. J Gen Microbiol3:193–205
    [Google Scholar]
  31. Kolb A., Busby S., Buc H., Garges S., Adhya S.. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–795
    [Google Scholar]
  32. Kotrbova-Kozak A., Kotrba P., Inui M., Sajdok J., Yukawa H.. 2007; Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol76:1347–1356
    [Google Scholar]
  33. Kramer R., Lambert C., Hoischen C., Ebbighausen H.. 1990; Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem194:929–935
    [Google Scholar]
  34. Kromer J. O., Sorgenfrei O., Klopprogge K., Heinzle E., Wittmann C.. 2004; In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol186:1769–1784
    [Google Scholar]
  35. Kronemeyer W., Peekhaus N., Kramer R., Sahm H., Eggeling L.. 1995; Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol177:1152–1158
    [Google Scholar]
  36. Krug A., Wendisch V. F., Bott M.. 2005; Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem280:585–595
    [Google Scholar]
  37. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  38. Letek M., Valbuena N., Ramos A., Ordonez E., Gil J. A., Mateos L. M.. 2006; Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol188:409–423
    [Google Scholar]
  39. Liebl W.. 1991; The genus Corynebacterium – nonmedical. In The Prokaryotes pp1157–1171 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer-Verlag;
    [Google Scholar]
  40. Liebl W.. 2005; Corynebacterium taxonomy. In Handbook on Corynebacterium glutamicum pp9–34 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  41. Liu X., De Wulf P.. 2004; Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem279:12588–12597
    [Google Scholar]
  42. Lynch A. S., Lin E. C. C.. others 1996; Responses to molecular oxygen. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp1526–1538 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Molenaar D., van der Rest M. E., Petrovic S.. 1998; Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem254:395–403
    [Google Scholar]
  44. Molenaar D., van der Rest M. E., Drysch A., Yucel R.. 2000; Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol182:6884–6891
    [Google Scholar]
  45. Muffler A., Bettermann S., Haushalter M., Horlein A., Neveling U., Schramm M., Sorgenfrei O.. 2002; Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol98:255–268
    [Google Scholar]
  46. Nakano M. M., Zuber P., Sonenshein A. L.. 1998; Anaerobic regulation of Bacillus subtilis Krebs cycle genes. J Bacteriol180:3304–3311
    [Google Scholar]
  47. Nishimura T., Vertès A., Shinoda Y., Inui M., Yukawa H.. 2007; Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol75:889–897
    [Google Scholar]
  48. Ohne M.. 1974; Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression. J Bacteriol117:1295–1305
    [Google Scholar]
  49. Perrenoud A., Sauer U.. 2005; Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol187:3171–3179
    [Google Scholar]
  50. Przybyla-Zawislak B., Gadde D. M., Ducharme K., McCammon M. T.. 1999; Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics152:153–166
    [Google Scholar]
  51. Reinscheid D. J., Eikmanns B. J., Sahm H.. 1994a; Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme. Microbiology140:3099–3108
    [Google Scholar]
  52. Reinscheid D. J., Eikmanns B. J., Sahm H.. 1994b; Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol176:3474–3483
    [Google Scholar]
  53. Rosenkrantz M. S., Dingman D. W., Sonenshein A. L.. 1985; Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J Bacteriol164:155–164
    [Google Scholar]
  54. Saier M. H. Jr, Ramseier T. M.. 1996; The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol178:3411–3417
    [Google Scholar]
  55. Saier M. H. Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J. J.. 1996; Catabolite repression and inducer control in Gram-positive bacteria. Microbiology142:217–230
    [Google Scholar]
  56. Unden G., Schirawski J.. 1997; The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol Microbiol25:205–210
    [Google Scholar]
  57. Unden G., Achebach S., Holighaus G., Tran H. G., Wackwitz B., Zeuner Y.. 2002; Control of FNR function of Escherichia coli by O2 and reducing conditions. J Mol Microbiol Biotechnol4:263–268
    [Google Scholar]
  58. Usuda Y., Tujimoto N., Abe C., Asakura Y., Kimura E., Kawahara Y., Kurahashi O., Matsui H.. 1996; Molecular cloning of the Corynebacterium glutamicum ( Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology142:3347–3354
    [Google Scholar]
  59. Wendisch V. F., de Graaf A. A., Sahm H., Eikmanns B. J.. 2000; Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol182:3088–3096
    [Google Scholar]
  60. Wennerhold J., Krug A., Bott M.. 2005; The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem280:40500–40508
    [Google Scholar]
  61. Winer J., Jung C. K. S., Shackel I., Williams P. M.. 1999; Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem270:41–49
    [Google Scholar]
  62. Wittmann C., De Graaf A. A.. 2005; Metabolic flux analysis in Corynebacterium glutamicum. In Handbook on Corynebacterium glutamicum pp277–304 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  63. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058
    [Google Scholar]
  64. Zhao Y., Lin Y.-H.. 2002; Flux distribution and partitioning in Corynebacterium glutamicum grown at different specific growth rates. Process Biochem37:775–785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019828-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019828-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error