1887

Abstract

SH1 is the only reported isolate of a spherical halovirus, a dominant morphotype in hypersaline lakes. The virus lytically infects the haloarchaeon , and carries a 30.9 kb linear dsDNA genome that, in a previous study, was proposed to contain 56 protein-coding genes, probably organized into between four and eight operons. In the present study, these predictions were directly tested by determining the orientations and lengths of virus transcripts using systematic RT-PCR and primer extension. Seven major transcripts were observed that together covered most of the genome. Six transcripts were synthesized from early in infection (1 h post-infection; p.i.) onwards, while transcript T6 was only detected late in infection (5–6 h p.i.). No transcripts were detected in the inverted terminal repeat sequences or at the extreme right end of the genome (ORFs 55–56). Start points for the major transcripts were mapped by primer extension and corresponded closely to the 5′ termini determined by RT-PCR. Between 1 and 4 h p.i., transcripts usually terminated not far beyond the end of their last coding ORF, but late in infection, transcripts from the same promoters often terminated at more distal points, resulting in much of the genome being transcribed from both strands. Since many of these transcripts are complementary, RNA–RNA interactions are likely, and may play a role in regulating viral gene expression. Puromycin blockage of post-infection protein synthesis significantly altered the levels of certain virus transcripts, indicating that protein synthesis is essential for the correct regulation of SH1 gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019422-0
2008-11-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3599.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019422-0&mimeType=html&fmt=ahah

References

  1. Ackermann H. W.. 2007; 5500 Phages examined in the electron microscope. Arch Virol152:227–243
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1994; Current Protocols in Molecular Biology New York: John Wiley and Sons;
    [Google Scholar]
  3. Azzam M. E., Algranati I. D.. 1973; Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. Proc Natl Acad Sci U S A70:3866–3869
    [Google Scholar]
  4. Badia D., Camacho A., Perez-Lago L., Escandon C., Salas M., Coll M.. 2006; The structure of phage φ29 transcription regulator p4-DNA complex reveals an N-hook motif for DNA. Mol Cell22:73–81
    [Google Scholar]
  5. Baliga N. S., Bonneau R., Facciotti M. T., Pan M., Glusman G., Deutsch E. W., Shannon P., Chiu Y., Weng R. S.. other authors 2004; Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res14:2221–2234
    [Google Scholar]
  6. Bamford D. H., Ravantti J. J., Rönnholm G., Laurinavičius S., Kukkaro P., Dyall-Smith M., Somerharju P., Kalkkinen N., Bamford J. K.. 2005; Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J Virol79:9097–9107
    [Google Scholar]
  7. Bath C., Cukalac T., Porter K., Dyall-Smith M.. 2006; His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology350:228–239
    [Google Scholar]
  8. Beck C. F., Warren R. A.. 1988; Divergent promoters, a common form of gene organization. Microbiol Rev52:318–326
    [Google Scholar]
  9. Benlloch S., López-López A., Casamayor E. O., Øvreås L., Goddard V., Daae F. L., Smerdon G., Massana R., Joint I.. other authors 2002; Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol4:349–360
    [Google Scholar]
  10. Bolhuis H., Palm P., Wende A., Falb M., Rampp M., Rodriguez-Valera F., Pfeiffer F., Oesterhelt D.. 2006; The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics7:169
    [Google Scholar]
  11. Bouvier T., del Giorgio P.. 2007; Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol9:287–297
    [Google Scholar]
  12. Brenneis M., Hering O., Lange C., Soppa J.. 2007; Experimental characterization of cis-acting elements important for translation and transcription in halophilic Archaea. PLoS Genet3:e229
    [Google Scholar]
  13. Burns D. G., Camakaris H. M., Janssen P. H., Dyall-Smith M. L.. 2004; Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol70:5258–5265
    [Google Scholar]
  14. Camacho A., Salas M.. 2001; Mechanism for the switch of φ6 DNA early to late transcription by regulatory protein p4 and histone-like protein p6. EMBO J20:6060–6070
    [Google Scholar]
  15. Cline S. W., Doolittle W. F.. 1992; Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J Bacteriol174:1076–1080
    [Google Scholar]
  16. Contursi P., Cannio R., Prato S., She Q., Rossi M., Bartolucci S.. 2007; Transcriptional analysis of the genetic element pSSVx: differential and temporal regulation of gene expression reveals correlation between transcription and replication. J Bacteriol189:6339–6350
    [Google Scholar]
  17. Dyall-Smith M., Tang S. L., Bath C.. 2003; Haloarchaeal viruses: how diverse are they?. Res Microbiol154:309–313
    [Google Scholar]
  18. Falb M., Pfeiffer F., Palm P., Rodewald K., Hickmann V., Tittor J., Oesterhelt D.. 2005; Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res15:1336–1343
    [Google Scholar]
  19. Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A.. 2005; Virus Taxonomy, VIIIth Report of the ICTV London: Elsevier/Academic Press;
    [Google Scholar]
  20. Fröls S., Gordon P. M., Panlilio M. A., Schleper C., Sensen C. W.. 2007; Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology365:48–59
    [Google Scholar]
  21. Gropp F., Palm P., Zillig W.. 1989; Expression and regulation of Halobacterium halobium phage φH genes. Can J Microbiol35:182–188
    [Google Scholar]
  22. Gropp F., Grampp B., Stolt P., Palm P., Zillig W.. 1992; The immunity-conferring plasmid p φHL from the Halobacterium salinarium phage φH: nucleotide sequence and transcription. Virology190:45–54
    [Google Scholar]
  23. Guixa-Boixareu N., Calderón-Paz J. I., Heldal M., Bratbak G., Pedrós-Alió C.. 1996; Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol11:215–227
    [Google Scholar]
  24. Hendrix R. W.. 2002; Bacteriophages: evolution of the majority. Theor Popul Biol61:471–480
    [Google Scholar]
  25. Hendrix R. W., Smith M. C., Burns R. N., Ford M. E., Hatfull G. F.. 1999; Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci U S A96:2192–2197
    [Google Scholar]
  26. Iro M., Klein R., Galos B., Baranyi U., Rossler N., Witte A.. 2007; The lysogenic region of virus φCh1: identification of a repressor–operator system and determination of its activity in halophilic Archaea. Extremophiles11:383–396
    [Google Scholar]
  27. Jäälinoja H. T., Roine E., Laurinmäki P., Kivelä H. M., Bamford D. H., Butcher S. J.. 2008; Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci U S A105:8008–8013
    [Google Scholar]
  28. Juez G., Rodriguez-Valera F., Ventosa A., Kushner D. J.. 1986; Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol8:75–79
    [Google Scholar]
  29. Kessler A., Brinkman A. B., van der Oost J., Prangishvili D.. 2004; Transcription of the rod-shaped viruses SIRV1 and SIRV2 of the hyperthermophilic archaeon Sulfolobus. J Bacteriol186:7745–7753
    [Google Scholar]
  30. Kessler A., Sezonov G., Guijarro J. I., Desnoues N., Rose T., Delepierre M., Bell S. D., Prangishvili D.. 2006; A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters. Nucleic Acids Res34:4837–4845
    [Google Scholar]
  31. Matsunaga F., Forterre P., Ishino Y., Myllykallio H.. 2001; In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci U S A98:11152–11157
    [Google Scholar]
  32. Meijer W. J., Horcajadas J. A., Salas M.. 2001; φ29 family of phages. Microbiol Mol Biol Rev65:261–287
    [Google Scholar]
  33. Ng W. V., Kennedy S. P., Mahairas G. G., Berquist B., Pan M., Shukla H. D., Lasky S. R., Baliga N. S., Thorsson V.. other authors 2000; Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A97:12176–12181
    [Google Scholar]
  34. Nuttall S. D., Dyall-Smith M. L.. 1993; HF1 and HF2: novel bacteriophages of halophilic archaea. Virology197:678–684
    [Google Scholar]
  35. Oren A., Bratbak G., Heldal M.. 1997; Occurrence of virus-like particles in the Dead Sea. Extremophiles1:143–149
    [Google Scholar]
  36. Porter K., Dyall-Smith M. L.. 2008; Transfection of haloarchaea by the DNAs of spindle and round haloviruses and the use of transposon mutagenesis to identify non-essential regions. Molecular Microbiology in press
    [Google Scholar]
  37. Porter K., Kukkaro P., Bamford J. K., Bath C., Kivelä H. M., Dyall-Smith M. L., Bamford D. H.. 2005; SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake. Virology335:22–33
    [Google Scholar]
  38. Prangishvili D., Forterre P., Garrett R. A.. 2006; Viruses of the Archaea: a unifying view. Nat Rev Microbiol4:837–848
    [Google Scholar]
  39. Reiter W. D., Palm P., Yeats S., Zillig W.. 1987; Gene expression in archaebacteria: physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Mol Gen Genet209:270–275
    [Google Scholar]
  40. Stolt P., Zillig W.. 1993; Antisense RNA mediates transcriptional processing in an archaebacterium, indicating a novel kind of RNase activity. Mol Microbiol7:875–882
    [Google Scholar]
  41. Stolt P., Zillig W.. 1994; Transcription of the halophage φH repressor gene is abolished by transcription from an inversely oriented lytic promoter. FEBS Lett344:125–128
    [Google Scholar]
  42. Weinbauer M. G.. 2004; Ecology of prokaryotic viruses. FEMS Microbiol Rev28:127–181
    [Google Scholar]
  43. Woods W. G., Ngui K., Dyall-Smith M.. 1999; An improved transposon for the halophilic archaeon Haloarcula hispanica. J Bacteriol181:7140–7142
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019422-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019422-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error