1887

Abstract

We have studied the role of the gene of , encoding the alpha subunit of a heterotrimeric G protein, in secondary metabolite production. The dominant activating mutation caused an increase in the production of the three secondary metabolites penicillin, the yellow pigment chrysogenin and the mycotoxin roquefortine, whereas the dominant inactivating allele and the deletion of the gene resulted in a decrease of the amount of produced penicillin and roquefortine. Chrysogenin is produced in solid medium as a yellow pigment, and its biosynthesis is clearly enhanced by the presence of the dominant activating allele. Roquefortine is produced associated with mycelium during the first 3 days in submerged cultures, and is released to the medium afterwards; dominant activating and inactivating mutations result in upregulation and downregulation of roquefortine biosynthesis recpectively. Pga1 regulates penicillin biosynthesis by controlling expression of the penicillin biosynthetic genes; the three genes , and showed elevated transcript levels in transformants expressing the allele, whereas in transformants with the inactivating allele and in the -deleted mutant their transcript levels were lower than those in the parental strains. Increase of intracellular cAMP levels had no effect on penicillin production. In summary, the dominant activating allele upregulates the biosynthesis of three secondary metabolites in to a different extent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019091-0
2008-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3567.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019091-0&mimeType=html&fmt=ahah

References

  1. Aharonowitz, Y., Cohen, G. & Martín, J. F. ( 1992; ). Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol 46, 461–495.[CrossRef]
    [Google Scholar]
  2. Asilonu, E., Bucke, C. & Keshavarz, T. ( 2000; ). Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides. Biotechnol Lett 22, 931–936.[CrossRef]
    [Google Scholar]
  3. Bohm, A., Gaudet, R. & Sigler, P. B. ( 1997; ). Structural aspects of heterotrimeric G-protein signaling. Curr Opin Biotechnol 8, 480–487.[CrossRef]
    [Google Scholar]
  4. Bölker, M. ( 1998; ). Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25, 143–156.[CrossRef]
    [Google Scholar]
  5. Brakhage, A. A. ( 1998; ). Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62, 547–585.
    [Google Scholar]
  6. Calvo, A. M., Wilson, R. A., Bok, J. W. & Keller, N. P. ( 2002; ). Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66, 447–459.[CrossRef]
    [Google Scholar]
  7. Casqueiro, J., Gutiérrez, S., Bañuelos, O., Hijarrubia, M. J. & Martín, J. F. ( 1999; ). Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181, 1181–1188.
    [Google Scholar]
  8. Chang, M. H., Chae, K. S., Han, D. M. & Jahng, K. Y. ( 2004; ). The GanB Gα-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics 167, 1305–1315.[CrossRef]
    [Google Scholar]
  9. de la Campa, R., Seifert, K. & Miller, J. D. ( 2007; ). Toxins from strains of Penicillium chrysogenum isolated from buildings and other sources. Mycopathologia 163, 161–168.[CrossRef]
    [Google Scholar]
  10. Elander, R. P. ( 2003; ). Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61, 385–392.[CrossRef]
    [Google Scholar]
  11. Fierro, F., Barredo, J. L., Díez, B., Gutiérrez, S., Fernández, F. J. & Martín, J. F. ( 1995; ). The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A 92, 6200–6204.[CrossRef]
    [Google Scholar]
  12. Fierro, F., Montenegro, E., Gutiérrez, S. & Martín, J. F. ( 1996; ). Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44, 597–604.[CrossRef]
    [Google Scholar]
  13. Fierro, F., Martín, J. F. & Kosalková, K. ( 2002; ). Sulfur-containing β-lactam antibiotics: enzymes, genes and regulation of the biosynthesis. In Microbial Secondary Metabolites: Biosynthesis, Genetics and Regulation, pp. 179–210. Edited by F. Fierro & J. F. Martín. Trivandrum, India: Research Signpost.
  14. Fierro, F., García-Estrada, C., Castillo, I., Rodríguez, R., Velasco-Conde, T. & Martín, J. F. ( 2006; ). Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43, 618–629.[CrossRef]
    [Google Scholar]
  15. Frisvad, J. C. & Filtenborg, O. ( 1983; ). Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46, 1301–1310.
    [Google Scholar]
  16. Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Baştürkmen, M., Spevak, C. C. & other authors ( 2005; ). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115.[CrossRef]
    [Google Scholar]
  17. García-Rico, R. O., Martín, J. F. & Fierro, F. ( 2007; ). The pga1 gene of Penicillium chrysogenum encodes a heterotrimeric G protein alpha subunit that controls growth and development. Res Microbiol 158, 437–446.[CrossRef]
    [Google Scholar]
  18. García-Rico, R. O., Fierro, F. & Martín, J. F. ( 2008; ). Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls conidiation mainly by a cAMP-independent mechanism. Biochem Cell Biol 86, 57–69.[CrossRef]
    [Google Scholar]
  19. Gutiérrez, S., Marcos, T., Casqueiro, J., Kosalkovà, K., Fernández, F., Velasco, J. & Martín, J. F. ( 1999; ). Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145, 317–324.[CrossRef]
    [Google Scholar]
  20. Hamm, H. E. ( 1998; ). The many faces of G protein signaling. J Biol Chem 273, 669–672.[CrossRef]
    [Google Scholar]
  21. Hicks, J. K., Yu, J. H., Keller, N. P. & Adams, T. H. ( 1997; ). Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16, 4916–4923.[CrossRef]
    [Google Scholar]
  22. Hoffmeister, D. & Keller, N. P. ( 2007; ). Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24, 393–416.[CrossRef]
    [Google Scholar]
  23. Keller, N. P., Turner, G. & Bennett, J. W. ( 2005; ). Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3, 937–947.[CrossRef]
    [Google Scholar]
  24. Kosalkova, K., Marcos, A. T., Fierro, F., Hernando-Rico, V., Gutiérrez, S. & Martín, J. F. ( 2000; ). A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275, 2423–2430.[CrossRef]
    [Google Scholar]
  25. Kurjan, J. ( 1992; ). Pheromone response in yeast. Annu Rev Biochem 61, 1097–1129.[CrossRef]
    [Google Scholar]
  26. Lengeler, K. B., Davidson, R. C., d'Souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M. & Heitman, J. ( 2000; ). Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64, 746–785.[CrossRef]
    [Google Scholar]
  27. Li, L., Wright, S. J., Krystofova, S., Park, G. & Borkovich, K. A. ( 2007; ). Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61, 423–452.[CrossRef]
    [Google Scholar]
  28. Liras, P. & Martín, J. F. ( 2006; ). Gene clusters for β-lactam antibiotics and control of their expression: why have clusters been formed and where do they come from? Int Microbiol 9, 9–19.
    [Google Scholar]
  29. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O. & other authors ( 2005; ). Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161.[CrossRef]
    [Google Scholar]
  30. Martín, J. F. ( 1998; ). New aspects of genes and enzymes for β-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50, 1–15.[CrossRef]
    [Google Scholar]
  31. Martín, J. F. ( 2000; ). Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182, 2355–2362.[CrossRef]
    [Google Scholar]
  32. Metsä-Ketelä, M., Ylihonko, K. & Mäntsälä, P. ( 2004; ). Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J Antibiot (Tokyo) 57, 502–510.[CrossRef]
    [Google Scholar]
  33. Neer, E. J. ( 1995; ). Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257.[CrossRef]
    [Google Scholar]
  34. Nielsen, K. F. & Smedsgaard, J. ( 2003; ). Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002, 111–136.[CrossRef]
    [Google Scholar]
  35. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  36. Reithner, B., Brunner, A., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R. & Zeilinger, S. ( 2005; ). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42, 749–760.[CrossRef]
    [Google Scholar]
  37. Rundberget, T., Skaar, I. & Flaoyen, A. ( 2004; ). The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90, 181–188.[CrossRef]
    [Google Scholar]
  38. Scott, P. M., Lawrence, J. W. & van Walbeek, W. ( 1970; ). Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Appl Microbiol 20, 839–842.
    [Google Scholar]
  39. Shimizu, K. & Keller, N. P. ( 2001; ). Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 15, 591–600.
    [Google Scholar]
  40. Suárez, T. & Peñalva, M. A. ( 1996; ). Characterisation of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20, 529–540.[CrossRef]
    [Google Scholar]
  41. Tag, A., Hicks, J., Garifullina, G., Ake, C., Jr, Phillips, T. D., Beremand, M. & Keller, N. ( 2000; ). G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol 38, 658–665.[CrossRef]
    [Google Scholar]
  42. van den Berg, M. A., Westerlaken, I., Leeflang, C., Kerkman, R. & Bovenberg, R. A. ( 2007; ). Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet Biol 44, 830–844.[CrossRef]
    [Google Scholar]
  43. Yang, Q. & Borkovich, K. A. ( 1999; ). Mutational activation of a Gα i causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics 151, 107–117.
    [Google Scholar]
  44. Yu, J. H. & Keller, N. ( 2005; ). Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43, 437–458.[CrossRef]
    [Google Scholar]
  45. Yu, J. H., Wieser, J. & Adams, T. H. ( 1996; ). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15, 5184–5190.
    [Google Scholar]
  46. Yu, H.-Y., Seo, J.-A., Kim, J.-E., Han, K.-H., Shim, W.-B., Yun, S.-H. & Lee, Y.-W. ( 2008; ). Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae. Microbiology 154, 392–401.[CrossRef]
    [Google Scholar]
  47. Zhang, Y. Q., Wilkinson, H., Keller, N. P. & Tsitsigiannis, D. I. ( 2004; ). Secondary metabolite gene clusters. In Handbook of Industrial Microbiology, pp. 355–386. Edited by Z. An. New York: Marcel Dekker.
  48. Zuber, S., Hynes, M. J. & Andrianopoulos, A. ( 2002; ). G-protein signaling mediates asexual development at 25 °C but has no effect on yeast-like growth at 37 °C in the dimorphic fungus Penicillium marneffei. Eukaryot Cell 1, 440–447.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019091-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019091-0
Loading

Data & Media loading...

Supplements

Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 1(b) of the main paper [ PDF] (57 kb) Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 3 of the main paper [ PDF] (58 kb) Effect of modifications of on expression of the penicillin biosynthesis gene in fermenter cultures of under controlled pH conditions. Lanes: 1, G203R-T; 2, Wis 54-1255 parental strain; 3, PgaG42R-1; 4, Δ . Hybridizations were performed with a probe internal to . Note the increased expression of the gene in the Wis 54-1255 pga1G42R transformant (lanes 3), whereas the deletion mutant Δ (lanes 4) and the pga1G203R transformant (lanes 1) showed reduced expression. The rRNAs are shown in the lower part of the figure as a control of the amount of loaded RNA. [ PDF] (676 kb) Penicillin production of strain Wis54-1255 growing in shake flask cultures with non-supplemented (Control) and 10 mM theophylline-supplemented (Theo-1, 2 and 3) CP medium. Error bars correspond to standard deviation of three replicates in three independent experiments. [ PDF] (316 kb)

PDF

Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 1(b) of the main paper [ PDF] (57 kb) Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 3 of the main paper [ PDF] (58 kb) Effect of modifications of on expression of the penicillin biosynthesis gene in fermenter cultures of under controlled pH conditions. Lanes: 1, G203R-T; 2, Wis 54-1255 parental strain; 3, PgaG42R-1; 4, Δ . Hybridizations were performed with a probe internal to . Note the increased expression of the gene in the Wis 54-1255 pga1G42R transformant (lanes 3), whereas the deletion mutant Δ (lanes 4) and the pga1G203R transformant (lanes 1) showed reduced expression. The rRNAs are shown in the lower part of the figure as a control of the amount of loaded RNA. [ PDF] (676 kb) Penicillin production of strain Wis54-1255 growing in shake flask cultures with non-supplemented (Control) and 10 mM theophylline-supplemented (Theo-1, 2 and 3) CP medium. Error bars correspond to standard deviation of three replicates in three independent experiments. [ PDF] (316 kb)

PDF

Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 1(b) of the main paper [ PDF] (57 kb) Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 3 of the main paper [ PDF] (58 kb) Effect of modifications of on expression of the penicillin biosynthesis gene in fermenter cultures of under controlled pH conditions. Lanes: 1, G203R-T; 2, Wis 54-1255 parental strain; 3, PgaG42R-1; 4, Δ . Hybridizations were performed with a probe internal to . Note the increased expression of the gene in the Wis 54-1255 pga1G42R transformant (lanes 3), whereas the deletion mutant Δ (lanes 4) and the pga1G203R transformant (lanes 1) showed reduced expression. The rRNAs are shown in the lower part of the figure as a control of the amount of loaded RNA. [ PDF] (676 kb) Penicillin production of strain Wis54-1255 growing in shake flask cultures with non-supplemented (Control) and 10 mM theophylline-supplemented (Theo-1, 2 and 3) CP medium. Error bars correspond to standard deviation of three replicates in three independent experiments. [ PDF] (316 kb)

PDF

Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 1(b) of the main paper [ PDF] (57 kb) Quantitative densitometric analysis of the Northern blot hybridization signals of the and genes in Fig. 3 of the main paper [ PDF] (58 kb) Effect of modifications of on expression of the penicillin biosynthesis gene in fermenter cultures of under controlled pH conditions. Lanes: 1, G203R-T; 2, Wis 54-1255 parental strain; 3, PgaG42R-1; 4, Δ . Hybridizations were performed with a probe internal to . Note the increased expression of the gene in the Wis 54-1255 pga1G42R transformant (lanes 3), whereas the deletion mutant Δ (lanes 4) and the pga1G203R transformant (lanes 1) showed reduced expression. The rRNAs are shown in the lower part of the figure as a control of the amount of loaded RNA. [ PDF] (676 kb) Penicillin production of strain Wis54-1255 growing in shake flask cultures with non-supplemented (Control) and 10 mM theophylline-supplemented (Theo-1, 2 and 3) CP medium. Error bars correspond to standard deviation of three replicates in three independent experiments. [ PDF] (316 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error