1887

Abstract

We have studied the role of the gene of , encoding the alpha subunit of a heterotrimeric G protein, in secondary metabolite production. The dominant activating mutation caused an increase in the production of the three secondary metabolites penicillin, the yellow pigment chrysogenin and the mycotoxin roquefortine, whereas the dominant inactivating allele and the deletion of the gene resulted in a decrease of the amount of produced penicillin and roquefortine. Chrysogenin is produced in solid medium as a yellow pigment, and its biosynthesis is clearly enhanced by the presence of the dominant activating allele. Roquefortine is produced associated with mycelium during the first 3 days in submerged cultures, and is released to the medium afterwards; dominant activating and inactivating mutations result in upregulation and downregulation of roquefortine biosynthesis recpectively. Pga1 regulates penicillin biosynthesis by controlling expression of the penicillin biosynthetic genes; the three genes , and showed elevated transcript levels in transformants expressing the allele, whereas in transformants with the inactivating allele and in the -deleted mutant their transcript levels were lower than those in the parental strains. Increase of intracellular cAMP levels had no effect on penicillin production. In summary, the dominant activating allele upregulates the biosynthesis of three secondary metabolites in to a different extent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019091-0
2008-11-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3567.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019091-0&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Cohen G., Martín J. F.. 1992; Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol46:461–495
    [Google Scholar]
  2. Asilonu E., Bucke C., Keshavarz T.. 2000; Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides. Biotechnol Lett22:931–936
    [Google Scholar]
  3. Bohm A., Gaudet R., Sigler P. B.. 1997; Structural aspects of heterotrimeric G-protein signaling. Curr Opin Biotechnol8:480–487
    [Google Scholar]
  4. Bölker M.. 1998; Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol25:143–156
    [Google Scholar]
  5. Brakhage A. A.. 1998; Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev62:547–585
    [Google Scholar]
  6. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P.. 2002; Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev66:447–459
    [Google Scholar]
  7. Casqueiro J., Gutiérrez S., Bañuelos O., Hijarrubia M. J., Martín J. F.. 1999; Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol181:1181–1188
    [Google Scholar]
  8. Chang M. H., Chae K. S., Han D. M., Jahng K. Y.. 2004; The GanB G α-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans. Genetics167:1305–1315
    [Google Scholar]
  9. de la Campa R., Seifert K., Miller J. D.. 2007; Toxins from strains of Penicillium chrysogenum isolated from buildings and other sources. Mycopathologia163:161–168
    [Google Scholar]
  10. Elander R. P.. 2003; Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol61:385–392
    [Google Scholar]
  11. Fierro F., Barredo J. L., Díez B., Gutiérrez S., Fernández F. J., Martín J. F.. 1995; The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A92:6200–6204
    [Google Scholar]
  12. Fierro F., Montenegro E., Gutiérrez S., Martín J. F.. 1996; Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol44:597–604
    [Google Scholar]
  13. Fierro F., Martín J. F., Kosalková K.. 2002; Sulfur-containing β-lactam antibiotics: enzymes, genes and regulation of the biosynthesis. In Microbial Secondary Metabolites: Biosynthesis, Genetics and Regulation pp179–210 Edited by Fierro F., Martín J. F.. Trivandrum, India: Research Signpost;
    [Google Scholar]
  14. Fierro F., García-Estrada C., Castillo I., Rodríguez R., Velasco-Conde T., Martín J. F.. 2006; Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol43:618–629
    [Google Scholar]
  15. Frisvad J. C., Filtenborg O.. 1983; Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol46:1301–1310
    [Google Scholar]
  16. Galagan J. E., Calvo S. E., Cuomo C., Ma L. J., Wortman J. R., Batzoglou S., Lee S. I., Baştürkmen M., Spevak C. C.. other authors 2005; Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature438:1105–1115
    [Google Scholar]
  17. García-Rico R. O., Martín J. F., Fierro F.. 2007; The pga1 gene of Penicillium chrysogenum encodes a heterotrimeric G protein alpha subunit that controls growth and development. Res Microbiol158:437–446
    [Google Scholar]
  18. García-Rico R. O., Fierro F., Martín J. F.. 2008; Heterotrimeric G α protein Pga1 of Penicillium chrysogenum controls conidiation mainly by a cAMP-independent mechanism. Biochem Cell Biol86:57–69
    [Google Scholar]
  19. Gutiérrez S., Marcos T., Casqueiro J., Kosalkovà K., Fernández F., Velasco J., Martín J. F.. 1999; Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology145:317–324
    [Google Scholar]
  20. Hamm H. E.. 1998; The many faces of G protein signaling. J Biol Chem273:669–672
    [Google Scholar]
  21. Hicks J. K., Yu J. H., Keller N. P., Adams T. H.. 1997; Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J16:4916–4923
    [Google Scholar]
  22. Hoffmeister D., Keller N. P.. 2007; Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep24:393–416
    [Google Scholar]
  23. Keller N. P., Turner G., Bennett J. W.. 2005; Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol3:937–947
    [Google Scholar]
  24. Kosalkova K., Marcos A. T., Fierro F., Hernando-Rico V., Gutiérrez S., Martín J. F.. 2000; A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem275:2423–2430
    [Google Scholar]
  25. Kurjan J.. 1992; Pheromone response in yeast. Annu Rev Biochem61:1097–1129
    [Google Scholar]
  26. Lengeler K. B., Davidson R. C., d'Souza C., Harashima T., Shen W. C., Wang P., Pan X., Waugh M., Heitman J.. 2000; Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev64:746–785
    [Google Scholar]
  27. Li L., Wright S. J., Krystofova S., Park G., Borkovich K. A.. 2007; Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol61:423–452
    [Google Scholar]
  28. Liras P., Martín J. F.. 2006; Gene clusters for β-lactam antibiotics and control of their expression: why have clusters been formed and where do they come from?. Int Microbiol9:9–19
    [Google Scholar]
  29. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O.. other authors 2005; Genome sequencing and analysis of Aspergillus oryzae. Nature438:1157–1161
    [Google Scholar]
  30. Martín J. F.. 1998; New aspects of genes and enzymes for β-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol50:1–15
    [Google Scholar]
  31. Martín J. F.. 2000; Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol182:2355–2362
    [Google Scholar]
  32. Metsä-Ketelä M., Ylihonko K., Mäntsälä P.. 2004; Partial activation of a silent angucycline-type gene cluster from a rubromycin beta producing Streptomyces sp. PGA64. J Antibiot (Tokyo) 57:502–510
    [Google Scholar]
  33. Neer E. J.. 1995; Heterotrimeric G proteins: organizers of transmembrane signals. Cell80:249–257
    [Google Scholar]
  34. Nielsen K. F., Smedsgaard J.. 2003; Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A1002:111–136
    [Google Scholar]
  35. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B.. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature438:1151–1156
    [Google Scholar]
  36. Reithner B., Brunner A., Schuhmacher R., Peissl I., Seidl V., Krska R., Zeilinger S.. 2005; The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol42:749–760
    [Google Scholar]
  37. Rundberget T., Skaar I., Flaoyen A.. 2004; The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol90:181–188
    [Google Scholar]
  38. Scott P. M., Lawrence J. W., van Walbeek W.. 1970; Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Appl Microbiol20:839–842
    [Google Scholar]
  39. Shimizu K., Keller N. P.. 2001; Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics15:591–600
    [Google Scholar]
  40. Suárez T., Peñalva M. A.. 1996; Characterisation of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol20:529–540
    [Google Scholar]
  41. Tag A., Hicks J., Garifullina G., Ake C. Jr, Phillips T. D., Beremand M., Keller N.. 2000; G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol38:658–665
    [Google Scholar]
  42. van den Berg M. A., Westerlaken I., Leeflang C., Kerkman R., Bovenberg R. A.. 2007; Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255. Fungal Genet Biol44:830–844
    [Google Scholar]
  43. Yang Q., Borkovich K. A.. 1999; Mutational activation of a G α i causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics151:107–117
    [Google Scholar]
  44. Yu J. H., Keller N.. 2005; Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol43:437–458
    [Google Scholar]
  45. Yu J. H., Wieser J., Adams T. H.. 1996; The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J15:5184–5190
    [Google Scholar]
  46. Yu H.-Y., Seo J.-A., Kim J.-E., Han K.-H., Shim W.-B., Yun S.-H., Lee Y.-W.. 2008; Functional analyses of heterotrimeric G protein G α and G β subunits in Gibberella zeae. Microbiology154:392–401
    [Google Scholar]
  47. Zhang Y. Q., Wilkinson H., Keller N. P., Tsitsigiannis D. I.. 2004; Secondary metabolite gene clusters. In Handbook of Industrial Microbiology pp355–386 Edited by An Z. New York: Marcel Dekker;
    [Google Scholar]
  48. Zuber S., Hynes M. J., Andrianopoulos A.. 2002; G-protein signaling mediates asexual development at 25 °C but has no effect on yeast-like growth at 37 °C in the dimorphic fungus Penicillium marneffei. Eukaryot Cell1:440–447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019091-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019091-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error