1887

Abstract

The (ferric uptake regulator) gene of ATCC 17616 was identified by transposon mutagenesis analysis. The deletion mutant of strain ATCC 17616 (i) constitutively produced siderophores, (ii) was more sensitive to reactive oxygen species (ROS) than the wild-type strain, (iii) showed lower superoxide dismutase and catalase activities than the wild-type strain, (iv) was unable to grow on M9 minimal agar plates containing several substrates that can be used as sole carbon sources by the wild-type strain, and (v) was hypersensitive to nitrite and nitric oxide under microaerobic and aerobic conditions, respectively. These results clearly indicate that the Fur protein in strain ATCC 17616 plays pleiotropic roles in iron homeostasis, removal and/or resistance to ROS and nitrosative stress, and energy metabolism. Furthermore, employment of an Fur titration assay system led to the isolation from the ATCC 17616 genome of 13 Fur-binding DNA regions, and a subsequent electrophoretic mobility-shift assay confirmed the direct binding of Fur protein to all of these DNA regions. Transcriptional analysis of the genes located just downstream of the Fur-binding sites demonstrated that Fur acts as a repressor for these genes. Nine of the 13 regions were presumed to be involved in the acquisition and utilization of iron.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015537-0
2008-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1763.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015537-0&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani, H., Hudson, A. J., Chang, Y. S., Timms, A. R., Hawkins, C., Williams, J. M., Harrison, P. M., Guest, J. R. & Andrews, S. C. ( 1999; ). Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181, 1415–1428.
    [Google Scholar]
  2. Agnoli, K., Lowe, C. A., Farmer, K. L., Husnain, S. I. & Thomas, M. S. ( 2006; ). The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. J Bacteriol 188, 3631–3644.[CrossRef]
    [Google Scholar]
  3. Amann, E. & Brosius, J. ( 1985; ). ATG vectors for regulated high-level expression of cloned genes in Escherichia coli. Gene 40, 183–190.[CrossRef]
    [Google Scholar]
  4. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinon∼es, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, E. R., Moore, D. D., Seidman, G. J., Smith, A. J. & Struhk, K. ( 1991; ). Current Protocols in Molecular Biology. New York: John Wiley & Sons.
  6. Banin, E., Vasil, M. L. & Greenberg, E. P. ( 2005; ). Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102, 11076–11081.[CrossRef]
    [Google Scholar]
  7. Beare, P. A., For, R. J., Martin, L. W. & Lamont, I. L. ( 2003; ). Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47, 195–207.
    [Google Scholar]
  8. Braun, V., Mahren, S. & Ogierman, M. ( 2003; ). Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr Opin Microbiol 6, 173–180.[CrossRef]
    [Google Scholar]
  9. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  10. Cheng, H. P. & Lessie, T. G. ( 1994; ). Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J Bacteriol 176, 4034–4042.
    [Google Scholar]
  11. Chiarini, L., Bevivino, A., Dalmastri, C., Tabacchioni, S. & Visca, P. ( 2006; ). Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14, 277–286.[CrossRef]
    [Google Scholar]
  12. Delany, I., Rappuoli, R. & Scarlato, V. ( 2004; ). Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52, 1081–1090.[CrossRef]
    [Google Scholar]
  13. Dennis, J. J. & Zylstra, G. J. ( 1998; ). Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64, 2710–2715.
    [Google Scholar]
  14. Escolar, L., Perez-Martin, J. & de Lorenzo, V. ( 1999; ). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181, 6223–6229.
    [Google Scholar]
  15. Hall, H. K. & Foster, J. W. ( 1996; ). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178, 5683–5691.
    [Google Scholar]
  16. Hantke, K. ( 1987; ). Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism. Mol Gen Genet 210, 135–139.[CrossRef]
    [Google Scholar]
  17. Heeb, S., Itoh, Y., Nishijyo, T., Schnider, U., Keel, C., Wade, J., Walsh, U., O'Gara, F. & Haas, D. ( 2000; ). Small, stable shuttle vectors based on the minimal pVS1 replicon for use in Gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13, 232–237.[CrossRef]
    [Google Scholar]
  18. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. ( 1998; ). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86.[CrossRef]
    [Google Scholar]
  19. Komatsu, H., Imura, Y., Ohori, A., Nagata, Y. & Tsuda, M. ( 2003; ). Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616. J Bacteriol 185, 3333–3343.[CrossRef]
    [Google Scholar]
  20. Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. & Vasil, M. L. ( 2002; ). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99, 7072–7077.[CrossRef]
    [Google Scholar]
  21. Lefebre, M. & Valvano, M. ( 2001; ). In vitro resistance of Burkholderia cepacia complex isolates to reactive oxygen species in relation to catalase and superoxide dismutase production. Microbiology 147, 97–109.
    [Google Scholar]
  22. Lessie, T. G., Hendrickson, W., Manning, B. D. & Devereux, R. ( 1996; ). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144, 117–128.[CrossRef]
    [Google Scholar]
  23. Litwin, C. M. & Calderwood, S. B. ( 1993; ). Role of iron in regulation of virulence genes. Clin Microbiol Rev 6, 137–149.
    [Google Scholar]
  24. Loprasert, S., Sallabhan, R., Whangsuk, W. & Mongkolsuk, S. ( 2000; ). Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 254, 129–137.[CrossRef]
    [Google Scholar]
  25. Lowe, C. A., Asghar, A. H., Shalom, G., Shaw, J. G. & Thomas, M. S. ( 2001; ). The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. Microbiology 147, 1303–1314.
    [Google Scholar]
  26. Lundberg, J. O., Weitzberg, E., Cole, J. A. & Benjamin, N. ( 2004; ). Nitrate, bacteria and human health. Nat Rev Microbiol 2, 593–602.[CrossRef]
    [Google Scholar]
  27. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  28. Masse, E. & Gottesman, S. ( 2002; ). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  29. Mellin, J. R., Goswami, S., Grogan, S., Tjaden, B. & Genco, C. A. ( 2007; ). A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J Bacteriol 189, 3686–3694.[CrossRef]
    [Google Scholar]
  30. Mey, A. R., Wyckoff, E. E., Kanukurthy, V., Fisher, C. R. & Payne, S. M. ( 2005; ). Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 73, 8167–8178.[CrossRef]
    [Google Scholar]
  31. Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A. & Storz, G. ( 2004; ). Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A 101, 745–750.[CrossRef]
    [Google Scholar]
  32. Nagata, Y., Matsuda, M., Komatsu, H., Imura, Y., Sawada, H., Ohtsubo, Y. & Tsuda, M. ( 2005; ). Organization and localization of the dnaA and dnaK gene regions on the multichromosomal genome of Burkholderia multivorans ATCC 17616. J Biosci Bioeng 99, 603–610.[CrossRef]
    [Google Scholar]
  33. Ohtsubo, Y., Goto, H., Nagata, Y., Kudo, T. & Tsuda, M. ( 2006; ). Identification of a response regulator gene for catabolite control from a PCB-degrading beta-proteobacteria, Acidovorax sp. KKS102. Mol Microbiol 60, 1563–1575.[CrossRef]
    [Google Scholar]
  34. Parke, J. L. & Gurian-Sherman, D. ( 2001; ). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.[CrossRef]
    [Google Scholar]
  35. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H. & other authors ( 2004; ). Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22, 877–882.[CrossRef]
    [Google Scholar]
  36. Sambrook, J. & Russell, W. D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  37. Schalk, I. J., Yue, W. W. & Buchanan, S. K. ( 2004; ). Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54, 14–22.[CrossRef]
    [Google Scholar]
  38. Schwyn, B. & Neilands, J. B. ( 1987; ). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  39. Sebastian, S., Agarwal, S., Murphy, J. R. & Genco, C. A. ( 2002; ). The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 184, 3965–3974.[CrossRef]
    [Google Scholar]
  40. Stojiljkovic, I., Bäumler, A. J. & Hantke, K. ( 1994; ). Fur regulon in Gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236, 531–545.[CrossRef]
    [Google Scholar]
  41. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  42. Takeshita, S., Sato, M., Toba, M., Masahashi, W. & Hashimoto-Gotoh, T. ( 1987; ). High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61, 63–74.[CrossRef]
    [Google Scholar]
  43. Thompson, D. K., Beliaev, A. S., Giometti, C. S., Tollaksen, S. L., Khare, T., Lies, D. P., Nealson, K. H., Lim, H., Yates, J., III & other authors ( 2002; ). Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68, 881–892.[CrossRef]
    [Google Scholar]
  44. Touati, D., Jacques, M., Tardat, B., Bouchard, L. & Despied, S. ( 1995; ). Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: protective role of superoxide dismutase. J Bacteriol 177, 2305–2314.
    [Google Scholar]
  45. Tuanyok, A., Kim, H. S., Nierman, W. C., Yu, Y., Dunbar, J., Moore, R. A., Baker, P., Tom, M., Ling, J. M. & Woods, D. E. ( 2005; ). Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252, 327–335.[CrossRef]
    [Google Scholar]
  46. Vasil, M. L. ( 2007; ). How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20, 587–601.[CrossRef]
    [Google Scholar]
  47. Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. ( 2002; ). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45, 1177–1190.[CrossRef]
    [Google Scholar]
  48. Wilderman, P. J., Sowa, N. A., FitzGerald, D. J., FitzGerald, P. C., Gottesman, S., Ochsner, U. A. & Vasil, M. L. ( 2004; ). Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101, 9792–9797.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015537-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015537-0
Loading

Data & Media loading...

Supplements

Table S1, showing primers used in this study, and Table S2, showing annotation data of the four regions in Fig. 3, are available as PDF files.

PDF

Table S1, showing primers used in this study, and Table S2, showing annotation data of the four regions in Fig. 3, are available as PDF files.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error