1887

Abstract

Two glucose/xylose transporter genes from were recently cloned and characterized: , which encodes a glucose/xylose facilitator; and , which encodes a glucose/xylose proton symporter. Here we report the functional expression of these transporters in . While Gxf1p seems to be fully functional in , the symporter Gxs1p exhibits very low glucose/xylose transport activity, which could not be ascribed to insufficient production of the protein or incorrect subcellular localization. In addition, co-expression of glucose/xylose facilitators with Gxs1p strongly reduced mRNA levels, and consequently symport activity, in glucose-grown, but not in ethanol-grown, cells. The observed decrease in transcript levels seems to be related to an enhanced glucose influx mediated by glucose facilitator protein(s), and not to a specific interaction between Gxs1p and other transporters. We found mRNA levels to be severely reduced as a result of glucose addition, and we show that this effect takes place at the level of mRNA stability. Our results suggest that a decrease in mRNAs encoding high-affinity/active sugar transport systems may be a widespread and conserved mechanism in yeasts, limiting expression of these proteins whenever their activity is dispensable.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015511-0
2008-06-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1646.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015511-0&mimeType=html&fmt=ahah

References

  1. Andrade R. P., Kötter P., Entian K. D., Casal M.. 2005; Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae . Biochem Biophys Res Commun332:254–262
    [Google Scholar]
  2. Cason D. T., Spencer-Martins I., van Uden N.. 1986; Transport of fructose by a proton symport in a brewing yeast. FEMS Microbiol Lett36:307–309
    [Google Scholar]
  3. Cereghino G. P., Scheffler I. E.. 1996; Genetic analysis of glucose regulation in Saccharomyces cerevisiae : control of transcription versus mRNA turnover. EMBO J15:363–374
    [Google Scholar]
  4. de la Cruz B. J., Prieto S., Scheffler I. E.. 2002; The role of the 5′ untranslated region (UTR) in glucose-dependent mRNA decay. Yeast19:887–902
    [Google Scholar]
  5. Eliasson A., Christensson C., Wahlbom C. F., Hahn-Hägerdal B.. 2000; Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1 , XYL2 , and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol66:3381–3386
    [Google Scholar]
  6. Flegelova H., Haguenauer-Tsapis R., Sychrova H.. 2006; Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae . Biochim Biophys Acta 1760;504–516
    [Google Scholar]
  7. Fonseca C., Romão R., Rodrigues de Sousa H., Hahn-Hägerdal B., Spencer-Martins I.. 2007; l-Arabinose transport and catabolism in yeast. FEBS J274:3589–3600
    [Google Scholar]
  8. Gancedo J. M.. 1998; Yeast carbon catabolite repression. Microbiol Mol Biol Rev62:334–361
    [Google Scholar]
  9. Gárdonyi M., Jeppsson M., Lidén G., Gorwa-Grauslund M. F., Hahn-Hägerdal B.. 2003a; Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae . Biotechnol Bioeng82:818–824
    [Google Scholar]
  10. Gárdonyi M., Österberg M., Rodrigues C., Spencer-Martins I., Hahn-Hägerdal B.. 2003b; High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res3:45–52
    [Google Scholar]
  11. Gietz R. D., Sugino A.. 1988; New yeast– Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene74:527–534
    [Google Scholar]
  12. Gietz R. D., Woods R. A.. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol350:87–96
    [Google Scholar]
  13. Gonçalves P., Rodrigues de Sousa H., Spencer-Martins I.. 2000; FSY1 , a novel gene encoding a specific fructose/H+ symporter in the type strain of Saccharomyces carlsbergensis . J Bacteriol182:5628–5630
    [Google Scholar]
  14. Griffioen G., Laan R. J., Mager W. H., Planta R. J.. 1996; Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology142:2279–2287
    [Google Scholar]
  15. Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M. F., Lidén G., Zacchi G.. 2006; Biol-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol24:549–556
    [Google Scholar]
  16. Hahn-Hägerdal B., Karhumaa K., Fonseca C., Spencer-Martins I., Gorwa-Grauslund M. F.. 2007; Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol74:937–953
    [Google Scholar]
  17. Hamacher T., Becker J., Gárdonyi M., Hahn-Hägerdal B., Boles E.. 2002; Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology148:2783–2788
    [Google Scholar]
  18. Hauf J., Zimmermann F. K., Müller S.. 2000; Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae . Enzyme Microb Technol26:688–698
    [Google Scholar]
  19. Hunter K., Rose A. H.. 1971; Yeast lipids and membranes. In The Yeastsvol. 2Physiology and Biochemistry of Yeasts pp211–270, 1st edn. Edited by Rose A. H., Harrison J. S.. London: Academic Press;
    [Google Scholar]
  20. Jeffries T. W.. 2006; Engineering yeasts for xylose metabolism. Curr Opin Biotechnol17:320–326
    [Google Scholar]
  21. Jeffries T. W., Grigoriev I. V., Grimwood J., Laplaza J. M., Aerts A., Salamov A., Schmutz J., Lindquist E., Dehal P.. other authors 2007; Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis . Nat Biotechnol25:319–326
    [Google Scholar]
  22. Karhumaa K., Wiedemann B., Hahn-Hägerdal B., Boles E., Gorwa-Grauslund M. F.. 2006; Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact5:18
    [Google Scholar]
  23. Kingsman S. M., Cousens D., Stanway C. A., Chambers A., Wilson M., Kingsman A. J.. 1990; High-efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol185:329–341
    [Google Scholar]
  24. Krampe S., Stamm O., Hollenberg C. P., Boles E.. 1998; Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett441:343–347
    [Google Scholar]
  25. Kresnowati M. T. A. P., van Winden W. A., Almering M. J. H., ten Pierick A., Ras C., Knijnenburg T. A., Daran-Lapujade P., Pronk J. T., Heijnen J. J., Daran J. M.. 2006; When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol2:49
    [Google Scholar]
  26. Kuyper M., Toirkens M. J., Diderich J. A., Winkler A. A., van Dijken J. P., Pronk J. T.. 2005; Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res5:925–934
    [Google Scholar]
  27. Leandro M. J., Gonçalves P., Spencer-Martins I.. 2006; Two glucose/xylose transporter genes from the yeast Candida intermedia : first molecular characterization of a yeast xylose–H+ symporter. Biochem J395:543–549
    [Google Scholar]
  28. Lee A. G.. 2004; How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta1666:62–87
    [Google Scholar]
  29. Lucas C., van Uden N.. 1986; Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae . Appl Microbiol Biotechnol23:491–495
    [Google Scholar]
  30. Lucas C., van Uden N.. 1988; Interconversion and glucose-induced inactivation of glucose transport systems in Candida shehatae . J Basic Microbiol28:639–643
    [Google Scholar]
  31. Nobre A., Lucas C., Leão C.. 1999; Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii . Appl Environ Microbiol65:3594–3598
    [Google Scholar]
  32. Opekarová M., Tanner W.. 2003; Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610;11–22
    [Google Scholar]
  33. Parker R., Herrick D., Peltz S. W., Jacobson A.. 1991; Measurement of mRNA decay rates in Saccharomyces cerevisiae . Methods Enzymol194:415–423
    [Google Scholar]
  34. Prieto S., de la Cruz B. J., Scheffler I. E.. 2000; Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life. J Biol Chem275:14155–14166
    [Google Scholar]
  35. Ramos J., Szkutnicka K., Cirillo V. P.. 1988; Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae . J Bacteriol170:5375–5377
    [Google Scholar]
  36. Rodrigues de Sousa H., Spencer-Martins I., Gonçalves P.. 2004; Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Yeast21:519–530
    [Google Scholar]
  37. Rolland F., Winderickx J., Thevelein J. M.. 2002; Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res2:183–201
    [Google Scholar]
  38. Saloheimo A., Rauta J., Stasyk O. V., Sibirny A. A., Penttilä M., Ruohonen L.. 2007; Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol74:1041–1052
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schägger H.. 1994; Denaturing Electrophoretic Techniques. In A Practical Guide to Membrane Protein Purification pp59–79 Edited by von Jagow G., Schägger H. San Diego: Academic Press;
    [Google Scholar]
  41. Scheffler I. E., de la Cruz B. J., Prieto S.. 1998; Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae . Int J Biochem Cell Biol30:1175–1193
    [Google Scholar]
  42. Sonderegger M., Sauer U.. 2003; Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol69:1990–1998
    [Google Scholar]
  43. Spencer-Martins I., van Uden N.. 1985; Catabolite interconversion of glucose transport systems in the yeast Candida wickerhamii . Biochim Biophys Acta812:168–172
    [Google Scholar]
  44. Sugita T., Nakase T.. 1999; Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida . Syst Appl Microbiol22:79–86
    [Google Scholar]
  45. van Maris A. J. A., Abbott D. A., Bellissimi E., van den Brink J., Kuyper M., Luttik M. A. H., Wisselink H. W., Scheffers W. A., van Dijken J. P., Pronk J. T.. 2006; Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae : current status. Antonie Van Leeuwenhoek90:391–418
    [Google Scholar]
  46. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P.. 1992; Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast8:501–517
    [Google Scholar]
  47. Verma R. S., Spencer-Martins I., van Uden N.. 1987; Role of de novo protein synthesis in the interconversion of glucose transport systems in the yeast Pichia ohmeri . Biochim Biophys Acta900:139–144
    [Google Scholar]
  48. Walsh M. C., Smits H. P., Scholte M., van Dam K.. 1994; Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol176:953–958
    [Google Scholar]
  49. Weierstall T., Hollenberg C. P., Boles E.. 1999; Cloning and characterization of three genes ( SUT1 3 ) encoding glucose transporters of the yeast Pichia stipitis . Mol Microbiol31:871–883
    [Google Scholar]
  50. Wieczorke R., Dlugai S., Krampe S., Boles E.. 2003; Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem13:123–134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015511-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015511-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error