1887

Abstract

Two glucose/xylose transporter genes from were recently cloned and characterized: , which encodes a glucose/xylose facilitator; and , which encodes a glucose/xylose proton symporter. Here we report the functional expression of these transporters in . While Gxf1p seems to be fully functional in , the symporter Gxs1p exhibits very low glucose/xylose transport activity, which could not be ascribed to insufficient production of the protein or incorrect subcellular localization. In addition, co-expression of glucose/xylose facilitators with Gxs1p strongly reduced mRNA levels, and consequently symport activity, in glucose-grown, but not in ethanol-grown, cells. The observed decrease in transcript levels seems to be related to an enhanced glucose influx mediated by glucose facilitator protein(s), and not to a specific interaction between Gxs1p and other transporters. We found mRNA levels to be severely reduced as a result of glucose addition, and we show that this effect takes place at the level of mRNA stability. Our results suggest that a decrease in mRNAs encoding high-affinity/active sugar transport systems may be a widespread and conserved mechanism in yeasts, limiting expression of these proteins whenever their activity is dispensable.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015511-0
2008-06-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1646.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015511-0&mimeType=html&fmt=ahah

References

  1. Andrade, R. P., Kötter, P., Entian, K. D. & Casal, M. ( 2005; ). Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 332, 254–262.[CrossRef]
    [Google Scholar]
  2. Cason, D. T., Spencer-Martins, I. & van Uden, N. ( 1986; ). Transport of fructose by a proton symport in a brewing yeast. FEMS Microbiol Lett 36, 307–309.[CrossRef]
    [Google Scholar]
  3. Cereghino, G. P. & Scheffler, I. E. ( 1996; ). Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover. EMBO J 15, 363–374.
    [Google Scholar]
  4. de la Cruz, B. J., Prieto, S. & Scheffler, I. E. ( 2002; ). The role of the 5′ untranslated region (UTR) in glucose-dependent mRNA decay. Yeast 19, 887–902.[CrossRef]
    [Google Scholar]
  5. Eliasson, A., Christensson, C., Wahlbom, C. F. & Hahn-Hägerdal, B. ( 2000; ). Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66, 3381–3386.[CrossRef]
    [Google Scholar]
  6. Flegelova, H., Haguenauer-Tsapis, R. & Sychrova, H. ( 2006; ). Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta 1760, 504–516.[CrossRef]
    [Google Scholar]
  7. Fonseca, C., Romão, R., Rodrigues de Sousa, H., Hahn-Hägerdal, B. & Spencer-Martins, I. ( 2007; ). l-Arabinose transport and catabolism in yeast. FEBS J 274, 3589–3600.[CrossRef]
    [Google Scholar]
  8. Gancedo, J. M. ( 1998; ). Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62, 334–361.
    [Google Scholar]
  9. Gárdonyi, M., Jeppsson, M., Lidén, G., Gorwa-Grauslund, M. F. & Hahn-Hägerdal, B. ( 2003a; ). Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82, 818–824.[CrossRef]
    [Google Scholar]
  10. Gárdonyi, M., Österberg, M., Rodrigues, C., Spencer-Martins, I. & Hahn-Hägerdal, B. ( 2003b; ). High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3, 45–52.
    [Google Scholar]
  11. Gietz, R. D. & Sugino, A. ( 1988; ). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.[CrossRef]
    [Google Scholar]
  12. Gietz, R. D. & Woods, R. A. ( 2002; ). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87–96.
    [Google Scholar]
  13. Gonçalves, P., Rodrigues de Sousa, H. & Spencer-Martins, I. ( 2000; ). FSY1, a novel gene encoding a specific fructose/H+ symporter in the type strain of Saccharomyces carlsbergensis. J Bacteriol 182, 5628–5630.[CrossRef]
    [Google Scholar]
  14. Griffioen, G., Laan, R. J., Mager, W. H. & Planta, R. J. ( 1996; ). Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiology 142, 2279–2287.[CrossRef]
    [Google Scholar]
  15. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G. & Zacchi, G. ( 2006; ). Biol-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24, 549–556.[CrossRef]
    [Google Scholar]
  16. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. & Gorwa-Grauslund, M. F. ( 2007; ). Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74, 937–953.[CrossRef]
    [Google Scholar]
  17. Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B. & Boles, E. ( 2002; ). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148, 2783–2788.
    [Google Scholar]
  18. Hauf, J., Zimmermann, F. K. & Müller, S. ( 2000; ). Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26, 688–698.[CrossRef]
    [Google Scholar]
  19. Hunter, K. & Rose, A. H. ( 1971; ). Yeast lipids and membranes. In The Yeasts, vol. 2, Physiology and Biochemistry of Yeasts, pp. 211–270. 1st edn. Edited by A. H. Rose & J. S. Harrison. London: Academic Press.
  20. Jeffries, T. W. ( 2006; ). Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17, 320–326.[CrossRef]
    [Google Scholar]
  21. Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P. & other authors ( 2007; ). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25, 319–326.[CrossRef]
    [Google Scholar]
  22. Karhumaa, K., Wiedemann, B., Hahn-Hägerdal, B., Boles, E. & Gorwa-Grauslund, M. F. ( 2006; ). Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5, 18. [CrossRef]
    [Google Scholar]
  23. Kingsman, S. M., Cousens, D., Stanway, C. A., Chambers, A., Wilson, M. & Kingsman, A. J. ( 1990; ). High-efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol 185, 329–341.
    [Google Scholar]
  24. Krampe, S., Stamm, O., Hollenberg, C. P. & Boles, E. ( 1998; ). Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441, 343–347.[CrossRef]
    [Google Scholar]
  25. Kresnowati, M. T. A. P., van Winden, W. A., Almering, M. J. H., ten Pierick, A., Ras, C., Knijnenburg, T. A., Daran-Lapujade, P., Pronk, J. T., Heijnen, J. J. & Daran, J. M. ( 2006; ). When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2, 49
    [Google Scholar]
  26. Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. ( 2005; ). Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5, 925–934.[CrossRef]
    [Google Scholar]
  27. Leandro, M. J., Gonçalves, P. & Spencer-Martins, I. ( 2006; ). Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose–H+ symporter. Biochem J 395, 543–549.[CrossRef]
    [Google Scholar]
  28. Lee, A. G. ( 2004; ). How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666, 62–87.[CrossRef]
    [Google Scholar]
  29. Lucas, C. & van Uden, N. ( 1986; ). Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23, 491–495.[CrossRef]
    [Google Scholar]
  30. Lucas, C. & van Uden, N. ( 1988; ). Interconversion and glucose-induced inactivation of glucose transport systems in Candida shehatae. J Basic Microbiol 28, 639–643.[CrossRef]
    [Google Scholar]
  31. Nobre, A., Lucas, C. & Leão, C. ( 1999; ). Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65, 3594–3598.
    [Google Scholar]
  32. Opekarová, M. & Tanner, W. ( 2003; ). Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610, 11–22.[CrossRef]
    [Google Scholar]
  33. Parker, R., Herrick, D., Peltz, S. W. & Jacobson, A. ( 1991; ). Measurement of mRNA decay rates in Saccharomyces cerevisiae. Methods Enzymol 194, 415–423.
    [Google Scholar]
  34. Prieto, S., de la Cruz, B. J. & Scheffler, I. E. ( 2000; ). Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life. J Biol Chem 275, 14155–14166.[CrossRef]
    [Google Scholar]
  35. Ramos, J., Szkutnicka, K. & Cirillo, V. P. ( 1988; ). Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae. J Bacteriol 170, 5375–5377.
    [Google Scholar]
  36. Rodrigues de Sousa, H., Spencer-Martins, I. & Gonçalves, P. ( 2004; ). Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Yeast 21, 519–530.[CrossRef]
    [Google Scholar]
  37. Rolland, F., Winderickx, J. & Thevelein, J. M. ( 2002; ). Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2, 183–201.[CrossRef]
    [Google Scholar]
  38. Saloheimo, A., Rauta, J., Stasyk, O. V., Sibirny, A. A., Penttilä, M. & Ruohonen, L. ( 2007; ). Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74, 1041–1052.[CrossRef]
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Schägger, H. ( 1994; ). Denaturing Electrophoretic Techniques. In A Practical Guide to Membrane Protein Purification, pp. 59–79. Edited by G. von Jagow & H. Schägger. San Diego: Academic Press.
  41. Scheffler, I. E., de la Cruz, B. J. & Prieto, S. ( 1998; ). Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 30, 1175–1193.[CrossRef]
    [Google Scholar]
  42. Sonderegger, M. & Sauer, U. ( 2003; ). Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69, 1990–1998.[CrossRef]
    [Google Scholar]
  43. Spencer-Martins, I. & van Uden, N. ( 1985; ). Catabolite interconversion of glucose transport systems in the yeast Candida wickerhamii. Biochim Biophys Acta 812, 168–172.[CrossRef]
    [Google Scholar]
  44. Sugita, T. & Nakase, T. ( 1999; ). Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst Appl Microbiol 22, 79–86.[CrossRef]
    [Google Scholar]
  45. van Maris, A. J. A., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A. H., Wisselink, H. W., Scheffers, W. A., van Dijken, J. P. & Pronk, J. T. ( 2006; ). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90, 391–418.[CrossRef]
    [Google Scholar]
  46. Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. ( 1992; ). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8, 501–517.[CrossRef]
    [Google Scholar]
  47. Verma, R. S., Spencer-Martins, I. & van Uden, N. ( 1987; ). Role of de novo protein synthesis in the interconversion of glucose transport systems in the yeast Pichia ohmeri. Biochim Biophys Acta 900, 139–144.[CrossRef]
    [Google Scholar]
  48. Walsh, M. C., Smits, H. P., Scholte, M. & van Dam, K. ( 1994; ). Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol 176, 953–958.
    [Google Scholar]
  49. Weierstall, T., Hollenberg, C. P. & Boles, E. ( 1999; ). Cloning and characterization of three genes (SUT13) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31, 871–883.[CrossRef]
    [Google Scholar]
  50. Wieczorke, R., Dlugai, S., Krampe, S. & Boles, E. ( 2003; ). Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem 13, 123–134.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015511-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015511-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error