1887

Abstract

Arabinan polysaccharide side-chains are present in both and in the heteropolysaccharide arabinogalactan (AG), and in in the lipoglycan lipoarabinomannan (LAM). This study shows by quantitative sugar and glycosyl linkage analysis that possesses a much smaller LAM version, Cg-LAM, characterized by single -Ara residues linked to the (1→6)-linked mannan backbone. MALDI-TOF MS showed an average molecular mass of 13 800–15 400 Da for Cg-LAM. The biosynthetic origin of Ara residues found in the extracytoplasmic arabinan domain of AG and LAM is well known to be provided by decaprenyl-monophosphoryl arabinose (DPA). However, the characterization of LAM in a  : :  mutant devoid of prenyltransferase activity and devoid of DPA-dependent arabinan deposition into AG revealed partial formation of LAM, albeit with a slightly altered molecular mass. These data suggest that in addition to DPA utilization as an Ara donor, alternative pathways exist in for Ara delivery, possibly via an unknown sugar nucleotide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008078-0
2007-08-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2621.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008078-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Radmacher E., Seidel M., Gande R., Hitchen P. G., Morris H. R., Dell A., Sahm H., Eggeling L., Besra G. S.. 2005; Deletion of Cg- emb in Corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg- ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J Biol Chem280:32362–32371
    [Google Scholar]
  2. Alderwick L. J., Dover L. G., Seidel M., Gande R., Sahm H., Eggeling L., Besra G. S.. 2006a; Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-d-arabinose metabolism. Glycobiology16:1073–1081
    [Google Scholar]
  3. Alderwick L. J., Seidel M., Sahm H., Besra G. S., Eggeling L.. 2006b; Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis . J Biol Chem281:15653–15661
    [Google Scholar]
  4. Belanger A. E., Besra G. S., Ford M. E., Mikusova K., Belisle J. T., Brennan P. J., Inamine J. M.. 1996; The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A93:11919–11924
    [Google Scholar]
  5. Berg S., Starbuck J., Torrelles J. B., Vissa V. D., Crick D. C., Chatterjee D., Brennan P. J.. 2005; Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan. J Biol Chem280:5651–5663
    [Google Scholar]
  6. Berg S., Kaur D., Jackson M., Brennan P. J.. 2007; The glycosyltransferases of Mycobacterium tuberculosis ; roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology17:35R–56R
    [Google Scholar]
  7. Besra G. S., Khoo K. H., McNeil M. R., Dell A., Morris H. R., Brennan P. J.. 1995; A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterisation of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry34:4257–4266
    [Google Scholar]
  8. Besra G. S., Morehouse C. B., Rittner C. M., Waechter C. J., Brennan P. J.. 1997; Biosynthesis of mycobacterial lipoarabinomannan. J Biol Chem272:18460–18466
    [Google Scholar]
  9. Bloom B. R., Murray C. J.. 1992; Tuberculosis: commentary on a reemergent killer. Science257:1055–1064
    [Google Scholar]
  10. Brennan P. J.. 2003; Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis . Tuberculosis (Edinb83:91–97
    [Google Scholar]
  11. Brennan P., Ballou C. E.. 1967; Biosynthesis of mannophosphoinositides by Mycobacterium phlei . The family of dimannophosphoinositides. J Biol Chem242:3046–3056
    [Google Scholar]
  12. Brennan P., Ballou C. E.. 1968; Biosynthesis of mannophosphoinositides by Mycobacterium phlei . Enzymatic acylation of the dimannophosphoinositides. J Biol Chem243:2975–2984
    [Google Scholar]
  13. Brennan P. J., Nikaido H.. 1995; The envelope of mycobacteria. Annu Rev Biochem64:29–63
    [Google Scholar]
  14. Chatterjee D., Bozic C. M., McNeil M., Brennan P. J.. 1991; Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis . J Biol Chem266:9652–9660
    [Google Scholar]
  15. Chatterjee D., Khoo K. H., McNeil M. R., Dell A., Morris H. R., Brennan P. J.. 1993; Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology3:497–506
    [Google Scholar]
  16. Daffé M., Brennan P. J., McNeil M.. 1990; Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterisation of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by1H and 13C NMR analyses.. J Biol Chem265:6734–6743
    [Google Scholar]
  17. Dell A., Khoo K.-H., Panico M., McDowell R. A., Etienne A. T., Reason A. J., Morris H. R.. 1993; FAB-MS and ES-MS of glycoproteins. In Glycobiology: a Practical Approach pp187–222 Edited by Fukuda M., Kobata A. Oxford: Oxford University Press;
  18. Dinadayala P., Kaur D., Berg S., Amin A. G., Vissa V. D., Chatterjee D., Brennan P. J., Crick D. C.. 2006; Genetic basis for the synthesis of the immunomodulatory mannose caps of lipoarabinomannan in Mycobacterium tuberculosis. J Biol Chem281:20027–20035
    [Google Scholar]
  19. Dmitriev B. A., Ehlers S., Rietschel E. T., Brennan P. J.. 2000; Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol290:251–258
    [Google Scholar]
  20. Dobson D. E., Mengeling B. J., Cilmi S., Hickerson S., Turco S. J., Beverley S. M.. 2003; Identification of genes encoding arabinosyltransferases (SCA) mediating developmental modifications of lipophosphoglycan required for sand fly transmission of Leishmania major . J Biol Chem278:28840–28848
    [Google Scholar]
  21. Dover L. G., Cerdeno-Tarraga A. M., Pallen M. J., Parkhill J., Besra G. S.. 2004; Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae . FEMS Microbiol Rev28:225–250
    [Google Scholar]
  22. Escuyer V. E., Lety M. A., Torrelles J. B., Khoo K. H., Tang J. B., Rithner C. D., Frehel C., McNeil M. R., Brennan P. J., Chatterjee D.. 2001; The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem276:48854–48862
    [Google Scholar]
  23. Fincher G. B., Stone B. A., Clarke A. E.. 1983; Arabinogalactan-proteins: structure, biosynthesis, and function. Annu Rev Plant Physiol34:47–70
    [Google Scholar]
  24. Gande R., Gibson K. J., Brown A. K., Krumbach K., Dover L. G., Sahm H., Shioyama S., Oikawa T., Besra G. S., Eggeling L.. 2004; Acyl-CoA carboxylases ( accD2 and accD3 ), together with a unique polyketide synthase (Cg- pks ), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis . J Biol Chem279:44847–44857
    [Google Scholar]
  25. Gilleron M., Nigou J., Cahuzac B., Puzo G.. 1999; Structural study of the lipomannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl- myo -inositol anchor. J Mol Biol285:2147–2160
    [Google Scholar]
  26. Gilleron M., Bala L., Brando T., Vercellone A., Puzo G.. 2000; Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterisation of the acyl- and glyco-forms. J Biol Chem275:677–684
    [Google Scholar]
  27. Goswami M., Dobson D. E., Beverley S. M., Turco S. J.. 2006; Demonstration by heterologous expression that the Leishmania SCA1 gene encodes an arabinopyranosyltransferase. Glycobiology16:230–236
    [Google Scholar]
  28. Guerardel Y., Maes E., Elass E., Leroy Y., Timmerman P., Besra G. S., Locht C., Strecker G., Kremer L.. 2002; Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae . Presence of unusual components with α 1,3-mannopyranose side chains. J Biol Chem277:30635–30648
    [Google Scholar]
  29. Guha-Niyogi A., Sullivan D. R., Turco S. J.. 2001; Glycoconjugate structures of parasitic protozoa. Glycobiology11:45–59
    [Google Scholar]
  30. Gurcha S. S., Baulard A. R., Kremer L., Locht C., Moody D. B., Muhlecker W., Costello C. E., Crick D. C., Brennan P. J., Besra G. S.. 2002; Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis . Biochem J365:441–450
    [Google Scholar]
  31. Hill D. L., Ballou C. E.. 1966; Biosynthesis of mannophospholipids by Mycobacterium phlei . J Biol Chem241:895–902
    [Google Scholar]
  32. Huang H., Scherman M. S., D'Haeze W., Vereecke D., Holsters M., Crick D. C., McNeil M. R.. 2005; Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho- α -d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem280:24539–24543
    [Google Scholar]
  33. Hunter S. W., Gaylord H., Brennan P. J.. 1986; Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem261:12345–12351
    [Google Scholar]
  34. Kaur D., Berg S., Dinadayala P., Giquel B., Chatterjee D., McNeil M. R., Vissa V. D., Crick D. C., Jackson M., Brennan P. J.. 2006; Biosynthesis of mycobacterial lipoarabinomannan: Role of a branching mannosyltransferase. Proc Natl Acad Sci U S A103:13664–13669
    [Google Scholar]
  35. Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D.. 1995; Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium . J Biol Chem270:12380–12389
    [Google Scholar]
  36. Kordulakova J., Gilleron M., Mikusova K., Puzo G., Brennan P. J., Gicquel B., Jackson M.. 2002; Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem277:31335–31344
    [Google Scholar]
  37. Kremer L., Gurcha S. S., Bifani P., Hitchen P. G., Baulard A., Morris H. R., Dell A., Brennan P. J., Besra G. S.. 2002; Characterisation of a putative α -mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis . Biochem J363:437–447
    [Google Scholar]
  38. Leopold K., Fischer W.. 1993; Molecular analysis of the lipoglycans of Mycobacterium tuberculosis . Anal Biochem208:57–64
    [Google Scholar]
  39. Liu J., Mushegian A.. 2003; Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci12:1418–1431
    [Google Scholar]
  40. McNeil M., Daffe M., Brennan P. J.. 1990; Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem265:18200–18206
    [Google Scholar]
  41. McNeil M., Daffe M., Brennan P. J.. 1991; Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem266:13217–13223
    [Google Scholar]
  42. Mengeling B. J., Turco S. J.. 1999; A high-yield, enzymatic synthesis of GDP-d-[3H]arabinose and GDP-L-[3H]fucose. Anal Biochem267:227–233
    [Google Scholar]
  43. Mikusova K., Huang H., Yagi T., Holsters M., Vereecke D., D'Haeze W., Scherman M. S., Brennan P. J., McNeil M. R., Crick D. C.. 2005; Decaprenylphosphoryl arabinofuranose, the donor of the d-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerisation of decaprenylphosphoryl ribose. J Bacteriol187:8020–8025
    [Google Scholar]
  44. Morita Y. S., Sena C. B., Waller R. F., Kurokawa K., Sernee M. F., Nakatani F., Haites R. E., Billman-Jacobe H., McConville M. J.. other authors 2006; PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem281:25143–25155
    [Google Scholar]
  45. Nigou J., Gilleron M., Puzo G.. 1999; Lipoarabinomannans: characterisation of the multiacylated forms of the phosphatidyl- myo -inositol anchor by NMR spectroscopy. Biochem J337:453–460
    [Google Scholar]
  46. Previato J. O., Mendonca-Previato L., Lewanczuk R. Z., Travassos L. R., Gorin P. A.. 1982; Crithidia spp.: structural comparison of polysaccharides for taxonomic significance. Exp Parasitol53:170–178
    [Google Scholar]
  47. Sahm H., Eggeling L., de Graaf A. A.. 2000; Pathway analysis and metabolic engineering in Corynebacterium glutamicum . Biol Chem381:899–910
    [Google Scholar]
  48. Schaeffer M. L., Khoo K. H., Besra G. S., Chatterjee D., Brennan P. J., Belisle J. T., Inamine J. M.. 1999; The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem274:31625–31631
    [Google Scholar]
  49. Scherman M., Weston A., Duncan K., Whittington A., Upton R., Deng L., Comber R., Friedrich J. D., McNeil M.. 1995; Biosynthetic origin of mycobacterial cell wall arabinosyl residues. J Bacteriol177:7125–7130
    [Google Scholar]
  50. Scherman M. S., Kalbe-Bournonville L., Bush D., Xin Y., Deng L., McNeil M.. 1996; Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem271:29652–29658
    [Google Scholar]
  51. Schneider P., McConville M. J., Ferguson M. A.. 1994; Characterization of GDP-alpha-d-arabinopyranose, the precursor of D-Ara p in Leishmania major lipophosphoglycan. J Biol Chem269:18332–18337
    [Google Scholar]
  52. Schneider P., Nikolaev A., Ferguson M. A.. 1995; The biosynthesis of GDP-d-arabinopyranose in Crithidia fasciculata : characterization of a d-arabino-1-kinase activity and its use in the synthesis of GDP-[5-3H]d-arabinopyranose. Biochem J311:307–315
    [Google Scholar]
  53. Seidel M., Alderwick L. J., Sahm H., Besra G. S., Eggeling L.. 2007; Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis . Glycobiology17:210–219
    [Google Scholar]
  54. Shi L., Berg S., Lee A., Spencer J. S., Zhang J., Vissa V., McNeil M. R., Khoo K. H., Chatterjee D.. 2006; The carboxy terminus of EmbC from Mycobacterium smegmatis mediates chain length extension of the arabinan in lipoarabinomannan. J Biol Chem281:19512–19526
    [Google Scholar]
  55. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491
    [Google Scholar]
  56. Tatituri R. V., Illarionov P. A., Dover L. G., Nigou J., Gilleron M., Hitchen P., Krumbach K., Morris H. R., Spencer N.. other authors 2007; Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem282:4561–4572
    [Google Scholar]
  57. Wolucka B. A., de Hoffmann E.. 1995; The presence of β -d-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem270:20151–20155
    [Google Scholar]
  58. Wolucka B. A., McNeil M. R., de Hoffmann E., Chojnacki T., Brennan P. J.. 1994; Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem269:23328–23335
    [Google Scholar]
  59. Xavier Da Silveira E., Jones C., Wait R., Previato J. O., Mendonca-Previato L.. 1998; Glycoinositol phospholipids from Endotrypanum species express epitopes in common with saccharide side chains of the lipophosphoglycan from Leishmania major . Biochem J329:665–673
    [Google Scholar]
  60. Zhang N., Torrelles J. B., McNeil M. R., Escuyer V. E., Khoo K. H., Brennan P. J., Chatterjee D.. 2003; The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol50:69–76
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008078-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008078-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error