1887

Abstract

Chromomycin A is an antitumour antibiotic that acts by inhibiting transcription and replication of DNA. The producer micro-organism subsp. is highly resistant to chromomycin A and to the structurally related compound mithramycin upon induction with chromomycin A. The biosynthetic gene cluster of chromomycin contains three genes involved in self-resistance to chromomycin in : and encode a type I ATP-binding cassette (ABC) transporter, and encodes a UvrA-like protein of ABC excision nuclease systems. These genes are linked in the chromosome, together with a gene encoding a transcriptional repressor (). Involvement of these genes in chromomycin resistance was determined through gene inactivation, and heterologous expression in . Inactivation of produced a chromomycin-sensitive low-producer strain, while inactivation of generated a high-chromomycin-producer strain, which was resistant to chromomycin, and also to mithramycin. Expression of either and , or , in generated strains with low chromomycin resistance; it was therefore necessary to co-express the three genes to achieve high levels of resistance. However, the CmrAB ABC transporter conferred a high level of resistance to the biosynthesis intermediate 4A,4E--dideacetyl-chromomycin A. A model is proposed for the biosynthesis of, and self-resistance to, chromomycin A in subsp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007922-0
2007-09-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3061.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007922-0&mimeType=html&fmt=ahah

References

  1. Barcelo F., Scotta C., Ortiz-Lombardia M., Mendez C., Salas J. A., Portugal J. 2007; Entropically driven binding of mithramycin in the minor groove of C/G-rich DNA sequences. Nucleic Acids Res 35:2215–2226
    [Google Scholar]
  2. Bianchi N., Rutigliano C., Passadore M., Tomassetti M., Pippo L., Mischiati C., Feriotto G., Gambari R. 1997; Targeting of the HIV-1 long terminal repeat with chromomycin potentiates the inhibitory effects of a triplex-forming oligonucleotide on Sp1-DNA interactions and in vitro transcription. Biochem J 326:919–927
    [Google Scholar]
  3. Bianchi N., Osti F., Rutigliano C., Corradini F. G., Borsetti E., Tomassetti M., Mischiati C., Feriotto G., Gambari R. 1999; The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br J Haematol 104:258–265
    [Google Scholar]
  4. Blanco G., Fu H., Mendez C., Khosla C., Salas J. A. 1996; Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents. Chem Biol 3:193–196
    [Google Scholar]
  5. Blanco G., Fernández E., Fernández M. J., Braña A. F., Weißbach U., Künzel E., Rohr J., Méndez C., Salas J. A. 2000; Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus. Mol Gen Genet 262:991–1000
    [Google Scholar]
  6. Chatterjee S., Zaman K., Ryu H., Conforto A., Ratan R. R. 2001; Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol 49:345–354
    [Google Scholar]
  7. Cundliffe E. 1989; How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–233
    [Google Scholar]
  8. Fernández E., Lombó F., Méndez C., Salas J. A. 1996; An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol Gen Genet 251:692–698
    [Google Scholar]
  9. Fernández E., Weibbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A. 1998; Identification of two genes from Streptomyces argillaceus encoding two glycosyltransferases involved in the transfer of a disaccharide during the biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937
    [Google Scholar]
  10. Furuya K., Hutchinson C. R. 1998; The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 168:243–249
    [Google Scholar]
  11. Garcia-Bernardo J., Braña A. F., Mendez C., Salas J. A. 2000; Insertional inactivation of mtrX and mtrY genes from the mithramycin gene cluster affects production and growth of the producer organism Streptomyces argillaceus. FEMS Microbiol Lett 186:61–65
    [Google Scholar]
  12. González A., Remsing L. L., Lombó F., Fernández-Lozano M. J., Prado L., Braña A. F., Rohr J., Méndez C., Salas J. A. 2001; The mtmCUV genes of the antitumor mithramycin gene cluster are involved in the biosynthesis of the sugar moieties. Mol Gen Genet 264:827–835
    [Google Scholar]
  13. Guilfoile P. G., Hutchinson C. R. 1991; A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 88:8553–8557
    [Google Scholar]
  14. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: The John Innes Foundation;
  15. Lombó F, Blanco G., Fernández E, Méndez C., Salas J. A. 1996; Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene 172:87–91
    [Google Scholar]
  16. Lombó F., Siems K., Braña A. F., Méndez C., Bindseil K., Salas J. A. 1997; Cloning and insertional inactivation of Streptomyces argillaceus genes involved in earliest steps of sugar biosynthesis of the antitumor polyketide mithramycin. J Bacteriol 179:3354–3357
    [Google Scholar]
  17. Lomovskaya N., Hong S. K., Kim S. U., Fonstein L., Furuya K., Hutchinson C. R. 1996; The Streptomyces peucetius drrC gene encodes a UvrA-like protein involved in daunorubicin resistance and production. J Bacteriol 178:3238–3245
    [Google Scholar]
  18. Lozano M. J., Remsing L. L., Quirós L. M., Braña A. F., Fernández E., Sánchez C., Méndez C., Rohr J., Salas J. A. 2000; Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus. J Biol Chem 275:3065–3074
    [Google Scholar]
  19. Martin J. F., Casqueiro J., Liras P. 2005; Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293
    [Google Scholar]
  20. Méndez C., Salas J. A. 2001; The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanism. Res Microbiol 152:341–350
    [Google Scholar]
  21. Menéndez N., Mohammad N., Braña A. F., Rohr J., Salas J. A., Méndez C. 2004a; Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogues. Chem Biol 11:21–32
    [Google Scholar]
  22. Menéndez N., Nur-e-Alam M., Braña A. F., Rohr J., Salas J. A., Méndez C. 2004b; Tailoring modification of deoxysugars during biosynthesis of the antitumor drug chromomycin A3 by Streptomyces griseus. subsp griseus. Mol Microbiol 53:903–915
    [Google Scholar]
  23. Menéndez N., Nur-e-Alam M., Fischer C., Braña A. F., Salas J. A., Rohr J., Méndez C. 2006; Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbiol 72:167–177
    [Google Scholar]
  24. Olano C., Rodríguez A. M., Méndez C., Salas J. A. 1995; A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16:333–343
    [Google Scholar]
  25. Pernodet J. L., Alegre M. T., Blondelet-Rouault M. H., Guerineau M. 1993; Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms. J Gen Microbiol 139:1003–1011
    [Google Scholar]
  26. Prado L., Lombó F., Braña A. F., Méndez C., Rohr J., Salas J. A. 1999; Analysis of two chromosomal regions adjacent to a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus. Mol Gen Genet 261:216–225
    [Google Scholar]
  27. Quirós L. M., Aguirrezabalaga I., Olano C., Méndez C., Salas J. A. 1998; Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28:1177–1186
    [Google Scholar]
  28. Remers W. A. 1979 The Chemistry of Antitumor Antibiotics vol 1 pp 133–175 New York: Wiley Interscience;
  29. Rohr J., Méndez C., Salas J. A. 1999; The biosynthesis of aureolic acid group antibiotics. Bioorg Chem 27:41–54
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Sastry M., Patel D. J. 1993; Solution structure of the mithramycin dimer–DNA complex. Biochemistry 32:6588–6604
    [Google Scholar]
  32. Sastry M., Fiala R., Patel D. J. 1995; Solution structure of mithramycin dimers bound to partially overlapping sites on DNA. J Mol Biol 251:674–689
    [Google Scholar]
  33. Skarbek J. D., Speedie M. K. 1981; Antitumor Compounds of Natural Origin. vol. 1 pp 191–235 Edited by Aszalos A. Boca Raton, FL: CRC Press;
  34. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194
    [Google Scholar]
  35. Vilches C., Méndez C., Hardisson C., Salas J. A. 1990; Biosynthesis of oleandomycin by Streptomyces antibioticus: influence of nutritional conditions and development of resistance. J Gen Microbiol 136:1447–1454
    [Google Scholar]
  36. Wohlert S. E., Kunzel E., Machinek R., Mendez C., Salas J. A., Rohr J. 1999; The structure of mithramycin reinvestigated. J Nat Prod 62:119–121
    [Google Scholar]
  37. Zhao L., Beyer N. J., Borisova S. A., Liu H. W. 2003; β-Glucosylation as a part of self-resistance mechanism in methymycin/pikromycin producing strain Streptomyces venezuelae. Biochemistry 42:14794–14804
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2007/007922-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007922-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error