1887

Abstract

A transcriptional profiling of the metabolism of under oxygen deprivation conditions is reported. It was observed that the glucose consumption rate per cell when cells were incubated under oxygen deprivation conditions was higher than that achieved by cells incubated under aerobic growth conditions. Furthermore, DNA microarray and quantitative RT-PCR analyses revealed that the genes of several key enzymes of the glycolytic and organic acid production pathways, including and , were significantly upregulated under oxygen deprivation conditions. The corresponding enzymic activities consistently correlated with the regulation patterns of the genetic expression observed at the transcriptional level. Studies of fusions with the and genes indicated not only that these genes are strongly induced at the onset of the stationary phase under aerobic growth conditions, but also that high expression levels are maintained under oxygen deprivation conditions. These results indicate that the genetic expression of several key metabolic enzymes in cells incubated under oxygen deprivation conditions is chiefly regulated at the transcriptional level. The physiological consequence of the observed increased transcription under oxygen deprivation conditions is an increased rate of carbon source consumption, which is accompanied by a concomitant increase in organic acid production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005587-0
2007-08-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2491.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005587-0&mimeType=html&fmt=ahah

References

  1. Billman-Jacobe H., Wang L., Kortt A., Stewart D., Radford A.. 1995; Expression and secretion of heterologous proteases by Corynebacterium glutamicum . Appl Environ Microbiol61:1610–1613
    [Google Scholar]
  2. Bunch P. K., Mat-Jan F., Lee N., Clark D. P.. 1997; The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli . Microbiology143:187–195
    [Google Scholar]
  3. Eggeling L., Sahm H.. 1999; Amino acid production: principles of metabolic engineering. In Metabolic Engineering pp153–176 Edited by Lee S. Y., Papoutsakis E. T.. New York: Marcel Dekker;
  4. Eikmanns B. J.. 1992; Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol174:6076–6086
    [Google Scholar]
  5. Eikmanns B.. 2005; Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In Handbook of Corynebacterium glutamicum pp241–276 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
  6. Emmerling M., Bailey J. E., Sauer U.. 2000; Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli . Biotechnol Bioeng67:623–627
    [Google Scholar]
  7. Gottschalk G.. 1985; Bacterial Metabolism , 2nd edn. New York: Springer;
  8. Gunsalus R. P., Park S. J.. 1994; Aerobic-anaerobic gene regulation in Escherichia coli : control by the ArcAB and Fnr regulons. Res Microbiol145:437–450
    [Google Scholar]
  9. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255
    [Google Scholar]
  10. Hermann T.. 2003; Industrial production of amino acids by coryneform bacteria. J Biotechnol104:155–172
    [Google Scholar]
  11. Inui M., Dumay V., Zahn K., Yamagata H., Yukawa H.. 1997; Structural and functional analysis of the phosphoenolpyruvate carboxylase gene from the purple nonsulfur bacterium Rhodopseudomonas palustris no. . 7. : J Bacteriol179:4942–4945
    [Google Scholar]
  12. Inui M., Terasawa M., Yukawa H.. 1999a; l-Isoleucine. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation pp1498–1503 Edited by Flickinger M. C., Drew S. W.. New York: Wiley;
  13. Inui M., Nakata K., Roh J. H., Zahn K., Yukawa H.. 1999b; Molecular and functional characterization of the Rhodopseudomonas palustris. no. 7 phosphoenolpyruvate carboxykinase gene. J Bacteriol181:2689–2696
    [Google Scholar]
  14. Inui M., Kawaguchi H., Murakami S., Vertès A. A., Yukawa H.. 2004a; Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen deprivation conditions. J Mol Microbiol Biotechnol8:243–254
    [Google Scholar]
  15. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H.. 2004b; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196
    [Google Scholar]
  16. Jensen P. R., Michelsen O.. 1992; Carbon and energy metabolism of atp mutants of Escherichia coli . J Bacteriol174:7635–7641
    [Google Scholar]
  17. Jensen P. R., Michelsen O., Westerhoff H. V.. 1995; Experimental determination of control by the H+-ATPase in Escherichia coli . J Bioenerg Biomembr27:543–554
    [Google Scholar]
  18. Jetten M. S., Gubler M. E., Lee S. H., Sinskey A. J.. 1994; Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum . Appl Environ Microbiol60:2501–2507
    [Google Scholar]
  19. Kang Y., Weber K. D., Qiu Y., Kiley P. J., Blattner F. R.. 2005; Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol187:1135–1160
    [Google Scholar]
  20. Kasimoglu E., Park S. J., Malek J., Tseng C. P., Gunsalus R. P.. 1996; Transcriptional regulation of the proton-translocating ATPase ( atpIBEFHAGDC ) operon of Escherichia coli : control by cell growth rate. J Bacteriol178:5563–5567
    [Google Scholar]
  21. Kelle R., Hermann T., Bathe B.. 2005; l-Lysine production. In Handbook of Corynebacterium glutamicum pp465–488 Edited by Eggeling L., Bott. Boca Raton, FL: CRC Press;
  22. Koebmann B. J., Westerhoff H. V., Snoep J. L., Nilsson D., Jensen P. R.. 2002a; The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol184:3909–3916
    [Google Scholar]
  23. Koebmann B. J., Westerhoff H. V., Snoep J. L., Solem C., Pedersen M. B., Nilsson D., Michelsen O., Jensen P. R.. 2002b; The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth. Mol Biol Rep29:41–45
    [Google Scholar]
  24. Kumagai H.. 2000; Microbial production of amino acids in Japan. Adv Biochem Eng Biotechnol69:71–85
    [Google Scholar]
  25. Molenaar D., van der Rest M. E., Petrovic S.. 1998; Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum . Eur J Biochem254:395–403
    [Google Scholar]
  26. Molenaar D., van der Rest M. E., Drysch A., Yucel R.. 2000; Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum . J Bacteriol182:6884–6891
    [Google Scholar]
  27. Murakami S., Nakata K., Okino S., Ikenaga Y., Inui M., Yukawa H.. 2005; Coryneform bacterium transformant and process for producing dicarboxylic acid using the same. PCT patent application, WO 2005/010182 A1
  28. Nakano M. M., Zuber P., Sonenshein A. L.. 1998; Anaerobic regulation of Bacillus subtilis Krebs cycle genes. J Bacteriol180:3304–3311
    [Google Scholar]
  29. Okino S., Inui M., Yukawa H.. 2005; Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol68:475–480
    [Google Scholar]
  30. Omumasaba C. A., Okai N., Inui M., Yukawa H.. 2004; Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol8:91–103
    [Google Scholar]
  31. Pao G. M., Tam R., Lipschitz L. S., Saier M. H. Jr. 1994; Response regulators: structure, function and evolution. Res Microbiol145:356–362
    [Google Scholar]
  32. Perrenoud A., Sauer U.. 2005; Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli . J Bacteriol187:3171–3179
    [Google Scholar]
  33. Peters-Wendisch P. G., Schiel B., Wendisch V. F., Katsoulidis E., Mockel B., Sahm H., Eikmanns B. J.. 2001; Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum . J Mol Microbiol Biotechnol3:295–300
    [Google Scholar]
  34. Salim K., Haedens V., Content J., Leblon G., Huygen K.. 1997; Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum . Appl Environ Microbiol63:4392–4400
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  36. Santana M., Ionescu M. S., Vertès A., Longin R., Kunst F., Danchin A., Glaser P.. 1994; Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. J Bacteriol176:6802–6811
    [Google Scholar]
  37. Sauer U., Lasko D. R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wuthrich K., Bailey J. E.. 1999; Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol181:6679–6688
    [Google Scholar]
  38. Schwinde J. W., Thum-Schmitz N., Eikmanns B. J., Sahm H.. 1993; Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum . J Bacteriol175:3905–3908
    [Google Scholar]
  39. Sekine H., Shimada T., Hayashi C., Ishiguro A., Tomita F., Yokota A.. 2001; H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol57:534–540
    [Google Scholar]
  40. Solem C., Koebmann B. J., Jensen P. R.. 2003; Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J Bacteriol185:1564–1571
    [Google Scholar]
  41. Sridhar J., Eiteman M. A., Wiegel J. W.. 2000; Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. Appl Environ Microbiol66:246–251
    [Google Scholar]
  42. Suzuki N., Okayama S., Nonaka H., Tsuge Y., Inui M., Yukawa H.. 2005; Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol71:3369–3372
    [Google Scholar]
  43. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H.. 1993a; Presence of mrr - and mcr -like restriction systems in coryneform bacteria. Res Microbiol144:181–185
    [Google Scholar]
  44. Vertès A. A., Hatakeyama K., Inui M., Kobayashi M., Kurusu Y., Yukawa H.. 1993b; Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem57:2036–2038
    [Google Scholar]
  45. Vertès A. A., Inui M., Yukawa H.. 2005; Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol71:7633–7642
    [Google Scholar]
  46. Ye R. W., Tao W., Bedzyk L., Young T., Chen M., Li L.. 2000; Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol182:4458–4465
    [Google Scholar]
  47. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005587-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005587-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error