1887

Abstract

A basic pattern of gene expression and of relative expression levels during different growth phases was obtained for R grown on different carbon sources. The gene cluster was transcribed as a mono- or polycistronic mRNA, depending on the growth phase. The 1.4 kb () and 2.3 kb () mRNAs were expressed in the early through late exponential phases, whereas the 3.7 kb (-) and 5.4 kb (-) mRNAs were only detected in the mid-exponential phase. All other glycolytic genes except and were transcribed as monocistronic mRNAs under all tested conditions. Identification and alignment of the promoter regions of the transcriptional start sites of glycolytic genes revealed strong similarities to the consensus promoter sequences of Gram-positive bacteria. All genes involved in glycolysis were coordinately expressed in medium containing glucose. Growth in the presence of glucose gave rise to abundant expression of most glycolytic genes, with the level of transcript being the highest. Glucose depletion led to a rapid repression of most glycolytic genes and a corresponding two- to fivefold increased expression of the gluconeogenic genes and , which are induced by pyruvate, lactate, acetate and/or other organic acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004366-0
2007-07-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2190.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004366-0&mimeType=html&fmt=ahah

References

  1. Barreiro C., Gonzalez-Lavado E., Patek M., Martin J.-F.. 2004; Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum : characterization of heat shock-induced promoters. J Bacteriol186:4813–4817[CrossRef]
    [Google Scholar]
  2. Brewster N. K., Val D. L., Walker M. E., Wallace J. C.. 1994; Regulation of pyruvate carboxylase isozyme ( PYC1 , PYC2 ) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth. Arch Biochem Biophys311:62–71[CrossRef]
    [Google Scholar]
  3. Bruckner R., Titgemeyer F.. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett209:141–148[CrossRef]
    [Google Scholar]
  4. Chang B. Y., Shyu Y. T., Doi R. H.. 1992; The interaction between Bacillus subtilis sigma-A ( σ A) factor and RNA polymerase with promoters. Biochimie74:601–612[CrossRef]
    [Google Scholar]
  5. Chassagnole C., Diano A., Letisse F., Lindley N. D.. 2003; Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation. J Biotechnol104:261–272[CrossRef]
    [Google Scholar]
  6. de Crombrugghe B., Busby S., Buc H.. 1984; Cyclic AMP receptor protein: role in transcription activation. Science224:831–838[CrossRef]
    [Google Scholar]
  7. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D.. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem254:96–102[CrossRef]
    [Google Scholar]
  8. Dover L. G., Cerdeno-Tarraga A. M., Pallen M. J., Parkhill J., Besra G. S.. 2004; Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev28:225–250[CrossRef]
    [Google Scholar]
  9. Eikmanns B. J.. 1992; Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol174:6076–6086
    [Google Scholar]
  10. Eikmanns B.. 2005; Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In Handbook on Corynebacterium glutamicum pp241–276 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  11. Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S.. 2000; Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem275:14031–14037[CrossRef]
    [Google Scholar]
  12. Funke G., Bernard K. A., von Graevenitz A., Clarridge J. E. III. 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev10:125–159
    [Google Scholar]
  13. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J.. 2003; Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol104:99–122[CrossRef]
    [Google Scholar]
  14. Gourdon P., Baucher M. F., Lindley N. D., Guyonvarch A.. 2000; Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol66:2981–2987[CrossRef]
    [Google Scholar]
  15. Gubler M., Jetten M., Lee S. H., Sinskey A. J.. 1994; Cloning of the pyruvate kinase gene ( pyk ) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol60:2494–2500
    [Google Scholar]
  16. Haldenwang W. G.. 1995; The sigma factors of Bacillus subtilis. Microbiol Rev59:1–30
    [Google Scholar]
  17. Harley C. B., Reynolds R. P.. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res15:2343–2361[CrossRef]
    [Google Scholar]
  18. Hauf J., Zimmermann F. K., Muller S.. 2000; Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol26:688–698[CrossRef]
    [Google Scholar]
  19. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255[CrossRef]
    [Google Scholar]
  20. Hayashi M., Mizoguchi H., Shiraishi N., Obayashi M., Nakagawa S., Imai J., Watanabe S., Ota T., Ikeda M.. 2002; Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem66:1337–1344[CrossRef]
    [Google Scholar]
  21. Huser A. T., Becker A., Brune I., Dondrup M., Kalinowski J., Plassmeier J., Puhler A., Wiegrabe I., Tauch A.. 2003; Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol106:269–286[CrossRef]
    [Google Scholar]
  22. Huser A. T., Chassagnole C., Lindley N. D., Merkamm M., Guyonvarch A., Elisakova V., Patek M., Kalinowski J., Brune I.. other authors 2005; Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol71:3255–3268[CrossRef]
    [Google Scholar]
  23. Ikeda M., Nakagawa S.. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol62:99–109[CrossRef]
    [Google Scholar]
  24. Inui M., Murakami S., Okino S., Kawaguchi H., Vertes A. A., Yukawa H.. 2004; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196[CrossRef]
    [Google Scholar]
  25. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of aspartate-derived amino acids and vitamins. J Biotechnol104:5–25[CrossRef]
    [Google Scholar]
  26. Kim H. J., Kim T. H., Kim Y., Lee H. S.. 2004; Identification and characterization of glxR , a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol186:3453–3460[CrossRef]
    [Google Scholar]
  27. Kinoshita S., Tanaka K.. 1972; Glutamic acid. In The Microbial Production of Amino Acids pp263–324 Edited by Yamada K.. New York: John Wiley;
    [Google Scholar]
  28. Kinoshita S., Udaka S., Shimono M.. 1957; Studies on the amino acid fermentation Part I. Production of l-glutamic acid by various microorganisms. J Gen Microbiol3:193–205[CrossRef]
    [Google Scholar]
  29. Koffas M. A., Jung G. Y., Aon J. C., Stephanopoulos G.. 2002; Effect of pyruvate carboxylase overexpression on the physiology of Corynebacterium glutamicum. Appl Environ Microbiol68:5422–5428[CrossRef]
    [Google Scholar]
  30. Kolb A., Busby S., Buc H., Garges S., Adhya S.. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–795[CrossRef]
    [Google Scholar]
  31. Kotrba P., Inui M., Yukawa H.. 2001; The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun289:1307–1313[CrossRef]
    [Google Scholar]
  32. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  33. Letek M., Valbuena N., Ramos A., Ordonez E., Gil J. A., Mateos L. M.. 2006; Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol188:409–423[CrossRef]
    [Google Scholar]
  34. Liebl W.. 1991; The genus Corynebacterium – nonmedical. In The Prokaryotes pp1157–1171 Edited by Balows A., Dworkin M., Harder W., Schleifer K. H., Trüper H. G.. New York: Springer-Verlag;
    [Google Scholar]
  35. Liebl W.. 2005; Corynebacterium taxonomy. In Handbook on Corynebacterium Glutamicum pp9–34 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  36. Lorca G. L., Chung Y. J., Barabote R. D., Weyler W., Schilling C. H., Saier M. H. Jr. 2005; Catabolite repression and activation in Bacillus subtilis : dependency on CcpA, HPr, and HprK. J Bacteriol187:7826–7839[CrossRef]
    [Google Scholar]
  37. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stulke J.. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol41:409–422[CrossRef]
    [Google Scholar]
  38. Meng W., Belyaeva T., Savery N. J., Busby S. J., Ross W. E., Gaal T., Gourse R. L., Thomas M. S.. 2001; UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Nucleic Acids Res29:4166–4178[CrossRef]
    [Google Scholar]
  39. Miwa Y., Fujita Y.. 2001; Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol ( iol ) operon. J Bacteriol183:5877–5884[CrossRef]
    [Google Scholar]
  40. Muffler A., Bettermann S., Haushalter M., Horlein A., Neveling U., Schramm M., Sorgenfrei O.. 2002; Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol98:255–268[CrossRef]
    [Google Scholar]
  41. Netzer R., Krause M., Rittmann D., Peters-Wendisch P. G., Eggeling L., Wendisch V. F., Sahm H.. 2004; Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol182:354–363[CrossRef]
    [Google Scholar]
  42. Omumasaba C. A., Okai N., Inui M., Yukawa H.. 2004; Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol8:91–103[CrossRef]
    [Google Scholar]
  43. Park S. Y., Kim H. K., Yoo S. K., Oh T. K., Lee J. K.. 2000; Characterization of glk , a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett188:209–215[CrossRef]
    [Google Scholar]
  44. Patek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G.. 2003; Promoters of Corynebacterium glutamicum. J Biotechnol104:311–323[CrossRef]
    [Google Scholar]
  45. Perez-Martin J., Rojo F., de Lorenzo V.. 1994; Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev58:268–290
    [Google Scholar]
  46. Peters-Wendisch P. G., Kreutzer C., Kalinowski J., Patek M., Sahm H., Eikmanns B. J.. 1998; Pyruvate carboxylase from Corynebacterium glutamicum : characterization, expression and inactivation of the pyc gene. Microbiology144:915–927[CrossRef]
    [Google Scholar]
  47. Predich M., Doukhan L., Nair G., Smith I.. 1995; Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol15:355–366[CrossRef]
    [Google Scholar]
  48. Riedel C., Rittmann D., Dangel P., Mockel B., Petersen S., Sahm H., Eikmanns B. J.. 2001; Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol3:573–583
    [Google Scholar]
  49. Ross W., Aiyar S. E., Salomon J., Gourse R. L.. 1998; Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol180:5375–5383
    [Google Scholar]
  50. Sahm H., Eggeling L., Eikmanns B., Kramer R.. 1995; Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol Rev16:243–252[CrossRef]
    [Google Scholar]
  51. Saier M. H. Jr, Chauvaux S., Deutscher J., Reizer J., Ye J. J.. 1995; Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci20:267–271[CrossRef]
    [Google Scholar]
  52. Sauer U., Treuner A., Buchholz M., Santangelo J., Durre P.. 1994; Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol176:6572–6582
    [Google Scholar]
  53. Schreiner M. E., Fiur D., Holatko J., Patek M., Eikmanns B. J.. 2005; E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum : molecular analysis of the gene and phylogenetic aspects. J Bacteriol187:6005–6018[CrossRef]
    [Google Scholar]
  54. Schwinde J. W., Thum-Schmitz N., Eikmanns B. J., Sahm H.. 1993; Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. J Bacteriol175:3905–3908
    [Google Scholar]
  55. Schwinde J. W., Hertz P. F., Sahm H., Eikmanns B. J., Guyonvarch A.. 2001; Lipoamide dehydrogenase from Corynebacterium glutamicum : molecular and physiological analysis of the lpd gene and characterization of the enzyme. Microbiology147:2223–2231
    [Google Scholar]
  56. Stulke J., Hillen W.. 2000; Regulation of carbon catabolism in Bacillus subtilis. Annu Rev Microbiol54:849–880[CrossRef]
    [Google Scholar]
  57. Wittmann C., De Graaf A. A.. 2005; Metabolic flux analysis in Corynebacterium glutamicum . In Handbook on Corynebacterium glutamicum pp277–304 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  58. Yokota A., Lindley N. D.. 2005; Central metabolism: sugar uptake and conversion. In Handbook on Corynebacterium glutamicum pp215–240 Edited by Eggeling L., Bott M.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  59. Yoshida K., Kobayashi K., Miwa Y., Kang C. M., Matsunaga M., Yamaguchi H., Tojo S., Yamamoto M., Nishi R.. other authors 2001; Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res29:683–692[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004366-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004366-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error