1887

Abstract

Nitriles are important environmental compounds, both as natural products and industrial pollutants. Until now, there have been no data on the possibility of microbial nitrile degradation at high pH/salt conditions. Acetonitrile (CHC≡N) is the simplest organic nitrile. Here, evidence is provided of microbial utilization of acetonitrile as a carbon, energy and nitrogen source at extremely high pH and moderate salinity. Positive enrichment cultures with acetonitrile at pH 10 and salt content equivalent to 0.6 M total Na were obtained from mixed sediment samples from soda lakes, but not from soda soils. Purification of these cultures resulted in the isolation of two bacterial strains capable of growth with acetonitrile as sole carbon, energy and nitrogen source under haloalkaline conditions. Apart from acetonitrile, the bacteria also grew with propionitrile. Nitrile hydrolysis to acetamide was identified as the rate-limiting step of acetonitrile degradation via the nitrile hydratase/amidase pathway. The new bacteria belonged to moderately salt-tolerant obligate alkaliphiles with optimum growth at pH 10 and 0.5 M total Na. The cells were yellow-coloured due to a high concentration of carotenoids dominated by zeaxanthin. Phylogenetic analysis placed the isolates into a new lineage within the family in the . On the basis of unique phenotypic properties and their separate phylogenetic position, the new bacteria are placed into a new genus and species for which the name gen. nov., sp. nov is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004150-0
2007-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1157.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004150-0&mimeType=html&fmt=ahah

References

  1. Almatawah, C. A., Cramp, R. & Cowach, D. A. ( 1999; ). Characterisation of an inducible nitrilase from a thermophilic bacillus. Extremophiles 3, 283–291.[CrossRef]
    [Google Scholar]
  2. Banerjee, A., Sharma, R. & Banerjee, U. C. ( 2002; ). The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60, 33–44.[CrossRef]
    [Google Scholar]
  3. Blakey, A. J., Colby, J., Williams, E. & O'Reilly, C. ( 1995; ). Regio- and stereo-specific nitrile hydrolysis by the nitrile hydratase from Rhodococcus AJ270. FEMS Microbiol Lett 129, 57–62.
    [Google Scholar]
  4. Bunch, A. W. ( 1998; ). Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74, 89–97.[CrossRef]
    [Google Scholar]
  5. Chapatwala, K. D., Babu, G. R. V., Dudley, C., Williams, R. & Aremu, K. ( 1993; ). Degradative capability of Pseudomonas putida on acetonitrile. Appl Biochem Biotechnol 39, 655–666.
    [Google Scholar]
  6. De Ley, J., Caffon, H. & Reinaerts, A. ( 1970; ). The quantitative measurements of hybridisation DNA from renaturation rates. Eur J Biochem 12, 133–140.[CrossRef]
    [Google Scholar]
  7. Gries-Romijn-van Eck ( 1966; ). Physiological and chemical test for drinking water. NEN 1056, IY-2 Nederlandse Normalisatie Instituut Rijswijk.
  8. Håkansson, K., Welander, U. & Mattiasson, B. ( 2005; ). Degradation of acetonitrile through a sequence of microbial reactors. Water Res 39, 648–654.[CrossRef]
    [Google Scholar]
  9. Harper, D. B. & Gibbs, P. A. ( 1979; ). Identification of isobutyronitrile and isobutyraldoxime O-methyl ether as volatile microbial catabolites of valine. Biochem J 182, 609–611.
    [Google Scholar]
  10. Jones, B. E., Grant, W. D., Duckworth, A. W. & Owenson, G. G. ( 1998; ). Microbial diversity of soda lakes. Extremophiles 2, 191–200.[CrossRef]
    [Google Scholar]
  11. Kobayashi, M. & Shimizu, S. ( 1998; ). Metalloenzyme nitrile hydratase: structure, regulation and application to biotechnology. Nat Biotechnol 16, 733–736.[CrossRef]
    [Google Scholar]
  12. Kobayashi, M. & Shimizu, S. ( 2000; ). Nitrile hydrolases. Curr Opin Chem Biol 4, 95–102.[CrossRef]
    [Google Scholar]
  13. Kobayashi, M., Goda, M. & Shimizu, S. ( 2002; ). Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. Biochem Biophys Res Commun 253, 662–666.
    [Google Scholar]
  14. Kohyama, I., Yoshimura, A., Aoshima, D., Yoshida, T., Kawamoto, H. & Nagasawa, T. ( 2006; ). Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms. Appl Microbiol Biotechnol 72, 600–606.[CrossRef]
    [Google Scholar]
  15. Layh, N., Hirrlinger, B., Stolz, A. & Knackmuss, H.-J. ( 1997; ). Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47, 668–674.[CrossRef]
    [Google Scholar]
  16. Luque-Almagro, V. M., Huertas, M.-J., Martınez-Luque, M., Moreno-Vivian, C., Roldan, M. D., García-Gil, L. J., Castillo, F. & Blasco, R. ( 2005; ). Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71, 940–947.[CrossRef]
    [Google Scholar]
  17. Manolov, T., Håkansson, K. & Benoit, G. ( 2005; ). Continuous acetonitrile degradation in a packed-bed bioreactor. Appl Microbiol Biotechnol 66, 567–574.
    [Google Scholar]
  18. Marmur, J. ( 1961; ). A procedure for isolation of DNA from microorganisms. J Mol Biol 3, 208–214.[CrossRef]
    [Google Scholar]
  19. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12 –bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55, 245–256.
    [Google Scholar]
  20. Podar, M., Eads, J. R. & Richardson, T. H. ( 2006; ). Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 5, 42.
    [Google Scholar]
  21. Sorokin, D. Yu. ( 2005; ). Is there a limit for high-pH growth? Int J Syst Evol Microbiol 55, 1405–1406.[CrossRef]
    [Google Scholar]
  22. Sorokin, D. Y. & Kuenen, J. G. ( 2005; ). Alkaliphilic chemolithotrophs from sodas lakes. FEMS Microbiol Ecol 52, 287–295.[CrossRef]
    [Google Scholar]
  23. Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M. & Kuenen, J. G. ( 2001; ). Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67, 528–538.[CrossRef]
    [Google Scholar]
  24. Takaichi, S. ( 1999; ). Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In The Photochemistry of Carotenoids, pp. 39–69. Edited by H. A. Frank, A. J. Young, G. Britton & R. J. Cogdell. Dordrecht: Kluwer.
  25. Takaichi, S. & Shimada, K. ( 1992; ). Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 23, 374–385.
    [Google Scholar]
  26. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  27. Vetter, J. ( 2000; ). Plant cyanogenic glycosides. Toxicon 38, 11–36.[CrossRef]
    [Google Scholar]
  28. Weatherburn, M. V. ( 1967; ). Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39, 971–974.[CrossRef]
    [Google Scholar]
  29. Zavarzin, G. A., Zhilina, T. N. & Kevbrin, V. V. ( 1999; ). The alkaliphilic microbial community and its functional diversity. Mikrobiologiia 68, 503–521.
    [Google Scholar]
  30. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004150-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004150-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error