1887

Abstract

Broad-host-range (BHR) IncP-1 plasmids have the ability to transfer between and replicate in nearly all species of the -, - and , but surprisingly few data are available on the stability of these plasmids in strains within their host range. Moreover, even though molecular interactions between the bacterial host and its plasmid(s) exist, no systematic study to date has compared the stability of the same plasmid among different hosts. The goal of this study was to examine whether the stability characteristics of an IncP-1 plasmid can be variable between strains within the host range of the plasmid. Therefore, 19 strains within the -, - or carrying the IncP-1 plasmid pB10 were serially propagated in non-selective medium and the fraction of segregants was monitored through replica-picking. Remarkably, a large variation in the stability of pB10 in different strains was found, even between strains within the same genus or species. Ten strains showed no detectable plasmid loss over about 200 generations, and in two strains plasmid-free clones were only sporadically observed. In contrast, three strains, R28, H2 and P21, exhibited rapid plasmid loss within 80 generations. Parameter estimation after mathematical modelling of these stability data suggested high frequencies of segregation (about 0.04 per generation) or high plasmid cost (i.e. a relative fitness decrease in plasmid-bearing cells of about 15 and 40 %), which was confirmed experimentally. The models also suggested that plasmid reuptake by conjugation only played a significant role in plasmid stability in one of the three strains. Four of the 19 strains lost the plasmid very slowly over about 600 generations. The erratic decrease of the plasmid-containing fraction and simulation of the data with a new mathematical model suggested that plasmid cost was variable over time due to compensatory mutations. The findings of this study demonstrate that the ability of a so-called ‘BHR’ plasmid to persist in a bacterial population is influenced by strain-specific traits, and therefore observations made for one strain should not be generalized for the entire species or genus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001784-0
2007-02-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/452.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001784-0&mimeType=html&fmt=ahah

References

  1. Adamczyk, M. & Jagura-Burdzy, G. ( 2003; ). Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol 50, 425–453.
    [Google Scholar]
  2. Adamczyk, M., Dolowy, P., Jonczyk, M., Thomas, C. M. & Jagura-Burdzy, G. ( 2006; ). The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. Microbiology 152, 1621–1637.[CrossRef]
    [Google Scholar]
  3. Andrup, L. & Andersen, K. ( 1999; ). A comparison of the kinetics of plasmid transfer in the conjugation systems encoded by the F plasmid from Escherichia coli and plasmid pCF10 from Enterococcus faecalis. Microbiology 145, 2001–2009.[CrossRef]
    [Google Scholar]
  4. Bailey, J. E. ( 1993; ). Host–vector interactions in Escherichia coli. Adv Biochem Eng Biotechnol 48, 29–52.
    [Google Scholar]
  5. Bentley, W. E. & Kompala, D. S. ( 1990; ). Optimal induction of protein synthesis in recombinant bacterial cultures. Ann N Y Acad Sci 589, 121–138.[CrossRef]
    [Google Scholar]
  6. Birnbaum, S. & Bailey, J. E. ( 1991; ). Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37, 736–745.[CrossRef]
    [Google Scholar]
  7. Bouma, J. E. & Lenski, R. E. ( 1988; ). Evolution of a bacteria/plasmid association. Nature 335, 351–352.[CrossRef]
    [Google Scholar]
  8. Bradley, D. E., Taylor, D. E. & Cohen, M. L. ( 1980; ). Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K12. J Bacteriol 143, 1466–1470.
    [Google Scholar]
  9. Dahlberg, C. & Chao, L. ( 2003; ). Amelioration of the cost of conjugative plasmid carriage in Escherichia coli K12. Genetics 165, 1641–1649.
    [Google Scholar]
  10. Datta, N. & Hedges, R. W. ( 1972; ). Host ranges of R factors. J Gen Microbiol 70, 453–460.[CrossRef]
    [Google Scholar]
  11. Datta, N., Hedges, R. W., Shaw, E. J., Sykes, R. B. & Richmond, M. H. ( 1971; ). Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol 108, 1244–1249.
    [Google Scholar]
  12. De Gelder, L., Ponciano, J. M., Abdo, Z., Joyce, P., Forney, L. J. & Top, E. M. ( 2004; ). Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 168, 1131–1144.[CrossRef]
    [Google Scholar]
  13. De Gelder, L., Vandecasteele, F. P. J., Brown, C. J., Forney, L. J. & Top, E. M. ( 2005; ). Plasmid donor affects host range of the promiscuous IncP-1β plasmid pB10 in a sewage sludge microbial community. Appl Environ Microbiol 71, 5309–5317.[CrossRef]
    [Google Scholar]
  14. de la Cruz, F. & Davies, J. ( 2000; ). Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8, 128–133.[CrossRef]
    [Google Scholar]
  15. del Solar, G., Alonso, J. C., Espinosa, M. & Diaz-Orejas, R. ( 1996; ). Broad-host-range plasmid replication: an open question. Mol Microbiol 21, 661–666.[CrossRef]
    [Google Scholar]
  16. Diaz, E., Munthali, M., de Lorenzo, V. & Timmis, K. ( 1994; ). Universal barrier to lateral spread of specific genes among microorganisms. Mol Microbiol 13, 855–861.[CrossRef]
    [Google Scholar]
  17. Diaz Ricci, J. C. & Hernández, M. E. ( 2000; ). Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20, 79–108.[CrossRef]
    [Google Scholar]
  18. Dröge, M., Pühler, A. & Selbitschka, W. ( 2000; ). Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263, 471–482.[CrossRef]
    [Google Scholar]
  19. Espinosa, M., Cohen, S., Couturier, M., del Solar, G., Diaz-Orejas, R., Giraldo, R., Janniere, L., Miller, C., Osborn, M. & Thomas, C. M. ( 2000; ). Plasmid replication and copy number control. In The Horizontal Gene Pool, pp. 1–47. Edited by C. M. Thomas. Amsterdam: Harwood Academic Publishers.
  20. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. ( 2005; ). Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3, 722–732.[CrossRef]
    [Google Scholar]
  21. Gerdes, K., Ayora, S., Canosa, I., Ceglowski, R., Diaz-Orejas, R., Franch, T., Gultyaev, A. P., Jensen, R. B., Kobayashi, I. & other authors ( 2000; ). Plasmid maintenance systems. In The Horizontal Gene Pool, pp. 49–85. Edited by C. M. Thomas. Amsterdam, The Netherlands: Harwood Academic Publishers.
  22. Glick, B. R. ( 1995; ). Metabolic load and heterologous gene expression. Biotechnol Adv 13, 247–261.[CrossRef]
    [Google Scholar]
  23. Gogarten, J. P. & Townsend, J. P. ( 2005; ). Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3, 679–687.[CrossRef]
    [Google Scholar]
  24. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. R. ( 2002; ). Prokaryotic evolution in the light of gene transfer. Mol Biol Evol 19, 2226–2238.[CrossRef]
    [Google Scholar]
  25. Gordon, D. M. ( 1992; ). Rate of plasmid transfer among Escherichia coli strains isolated from natural populations. J Gen Microbiol 138, 17–21.[CrossRef]
    [Google Scholar]
  26. Gordon, S., Rech, J., Lane, D. & Wright, A. ( 2004; ). Kinetics of plasmid segregation in Escherichia coli. Mol Microbiol 51, 461–469.[CrossRef]
    [Google Scholar]
  27. Götz, A., Pukall, R., Smit, E., Tietze, E., Prager, R. & Tschäpe, H. ( 1996; ). Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62, 2621–2628.
    [Google Scholar]
  28. Guiney, D. G. & Lanka, E. ( 1989; ). Conjugative transfer of IncP plasmids. In Promiscuous Plasmids of Gram-Negative Bacteria, pp. 27–56. Edited by C. M. Thomas. San Diego: Academic Press.
  29. Helinski, D. R., Toukdarian, A. E. & Novick, R. P. ( 1996; ). Replication control and other stable maintenance systems of plasmids. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 2295–2324. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  30. Helling, R. B., Kinney, T. & Adams, J. ( 1981; ). The maintenance of plasmid-containing organisms in populations of Escherichia coli. J Gen Microbiol 123, 129–141.
    [Google Scholar]
  31. Heuer, H., Fox, R. & Top, E. M. ( 2007; ). Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavourable Pseudomonas putida host. FEMS Microbiol Ecol (in press). doi:10.1111/j.1574 – 6941.2006.00223.x
    [Google Scholar]
  32. Holling, C. S. ( 1965; ). The functional response of invertebrate predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 451–460.
    [Google Scholar]
  33. Jagura-Burdzy, G. & Thomas, C. M. ( 1992; ). kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. J Mol Biol 225, 651–660.[CrossRef]
    [Google Scholar]
  34. Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. ( 2002; ). Horizontal gene transfer in microbial genome evolution. Theor Pop Biol 61, 489–495.[CrossRef]
    [Google Scholar]
  35. Jaspers, E. & Overmann, J. ( 2004; ). Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70, 4831–4839.[CrossRef]
    [Google Scholar]
  36. Joyce, P., Abdo, Z., Ponciano, J., De Gelder, L., Forney, L. & Top, E. M. ( 2005; ). Modeling the impact of periodic bottlenecks, unidirectional mutation and observational error in experimental evolution. J Math Biol 50, 645–662.[CrossRef]
    [Google Scholar]
  37. Kado, C. I. & Liu, S. T. ( 1981; ). Rapid procedure for detection and isolation of small and large plasmids. J Bacteriol 145, 1365–1373.
    [Google Scholar]
  38. King, T., Ishihama, A., Kori, A. & Ferenci, T. ( 2004; ). A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186, 5614–5620.[CrossRef]
    [Google Scholar]
  39. Koraimann, G. ( 2004; ). Bacterial conjugation: cell-cell contact-dependent horizontal gene spread. In Microbial Evolution: Gene Establishment, Survival and Exchange, pp. 111–124. Edited by R. V. Miller & M. J. Day. Washington, DC: American Society for Microbiology.
  40. Krishnapillai, V. ( 1988; ). Molecular genetic analysis of bacterial plasmid promiscuity. FEMS Microbiol Rev 54, 223–238.[CrossRef]
    [Google Scholar]
  41. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. ( 1991; ). Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138, 1315–1341.[CrossRef]
    [Google Scholar]
  42. Levin, B. R. & Stewart, F. M. ( 1980; ). The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425–443.
    [Google Scholar]
  43. Levin, B. R., Stewart, F. M. & Rice, V. A. ( 1979; ). The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2, 247–260.[CrossRef]
    [Google Scholar]
  44. Mazel, D. & Davies, J. ( 1999; ). Antibiotic resistance in microbes. Cell Mol Life Sci 56, 742–754.[CrossRef]
    [Google Scholar]
  45. McClure, N., Weightman, A. & Fry, J. ( 1989; ). Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated-sludge unit. Appl Environ Microbiol 55, 2627–2634.
    [Google Scholar]
  46. Modi, R. I. & Adams, J. ( 1991; ). Coevolution in bacterial-plasmid populations. Evolution 45, 656–667.[CrossRef]
    [Google Scholar]
  47. Modi, R. I., Wilke, C. M., Rosenzweig, R. F. & Adams, J. ( 1991; ). Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. Genetica 84, 195–202.[CrossRef]
    [Google Scholar]
  48. Nordström, K. & Austin, S. J. ( 1989; ). Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23, 37–69.[CrossRef]
    [Google Scholar]
  49. Olsen, R. H. & Shipley, P. ( 1973; ). Host range and properties of the Pseudomonas aeruginosa R factor R1822. J Bacteriol 113, 772–780.
    [Google Scholar]
  50. Ponciano, J. M., De Gelder, L., Top, E. M. & Joyce, P. ( 2007; ). The population biology of bacterial plasmids: a Hidden-Markov model approach. Genetics (in press).
    [Google Scholar]
  51. Poole, K. ( 2002; ). Mechanisms of bacterial biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol 31, 55S–64S.
    [Google Scholar]
  52. Qiagen ( 2001; ). Sample preparation and lysis protocol for bacteria. In Qiagen Genomic DNA Handbook, pp. 40–43.
  53. Rademaker, J. L. W., Louws, F. J. & de Bruijn, F. J. ( 1997; ). Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In Molecular Microbial Ecology Manual, Supplement 3, pp. 1–26. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht, The Netherlands: Kluwer.
  54. Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., Trinidad Gallegos, M., Brennan, R. & Tobes, R. ( 2005; ). The tetR family of transcriptional repressors. Microbiol Mol Biol Rev 69, 326–356.[CrossRef]
    [Google Scholar]
  55. Ramos-Gonzalez, M.-I., Duque, E. & Ramos, J. L. ( 1991; ). Conjugational transfer of recombinant DNA in cultures and in soils: host range of Pseudomonas putida TOL plasmids. Appl Environ Microbiol 57, 3020–3027.
    [Google Scholar]
  56. Rice, J. ( 1995; ). Mathematical Statistics and Data Analysis, 2nd edn. Belmont, CA: Duxbury Press.
  57. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  58. Schloter, M., Lebuhn, M., Heulin, T. & Hartmann, A. ( 2000; ). Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24, 647–660.[CrossRef]
    [Google Scholar]
  59. Schlüter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C. M., Pühler, A. & Top, E. M. ( 2003; ). The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1B group. Microbiology 149, 3139–3153.[CrossRef]
    [Google Scholar]
  60. Simonsen, L., Gordon, D. M., Stewart, F. M. & Levin, B. R. ( 1990; ). Estimating the rate of plasmid transfer: an end-point method. J Gen Microbiol 136, 2319–2325.[CrossRef]
    [Google Scholar]
  61. Smets, B. F. & Barkay, T. ( 2005; ). Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3, 675–678.[CrossRef]
    [Google Scholar]
  62. Stewart, F. M. & Levin, B. R. ( 1977; ). The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 87, 209–228.
    [Google Scholar]
  63. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F., Hufnagle, W., Kowalik, D. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  64. Summers, D. K. ( 1991; ). The kinetics of plasmid loss. Trends Biotechnol 9, 273–278.[CrossRef]
    [Google Scholar]
  65. Thomas, C. M. ( 2000; ). Paradigms of plasmid organization. Mol Microbiol 37, 485–491.
    [Google Scholar]
  66. Thomas, C. M. & Helinski, D. R. ( 1989; ). Vegatative replication and stable inheritance of IncP plasmids. In Promiscuous Plasmids of Gram-Negative Bacteria, pp. 1–25. Edited by C. M. Thomas. San Diego: Academic Press.
  67. Thomas, C. M. & Smith, C. A. ( 1987; ). Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41, 77–101.[CrossRef]
    [Google Scholar]
  68. Thompson, J. R., Pacocha, S., Pharino, C., Klepac-Ceraj, V., Hunt, D. E., Benoit, J., Sarma-Rupavtarm, R., Distel, D. L. & Polz, M. F. ( 2005; ). Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313.[CrossRef]
    [Google Scholar]
  69. Top, E. M., Mergeay, M., Springael, D. & Verstraete, W. ( 1990; ). Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol 56, 2471–2479.
    [Google Scholar]
  70. Top, E., De Smet, I., Verstraete, W., Dijkmans, R. & Mergeay, M. ( 1994; ). Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60, 831–839.
    [Google Scholar]
  71. Toukdarian, A. ( 2004; ). Plasmid strategies for broad-host-range replication in Gram-negative bacteria. In Plasmid Biology, pp. 259–270. Edited by B. E. Funnell & G. J. Phillips. Washington, DC: American Society for Microbiology.
  72. Turner, P. E., Cooper, V. S. & Lenski, R. E. ( 1998; ). Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 52, 315–329.[CrossRef]
    [Google Scholar]
  73. Velmurugan, S., Mehta, S., Uzri, D. & Jayaram, M. ( 2003; ). Stable propagation of ‘selfish’ genetic elements. J Biosci 28, 623–636.[CrossRef]
    [Google Scholar]
  74. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S.-R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
  75. Williams, R. R. & Thomas, C. M. ( 1992; ). Active partitioning of bacterial plasmids. J Gen Microbiol 138, 1–6.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001784-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001784-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error