1887

Abstract

Phytoplasmas (‘ Phytoplasma’) are insect-vectored plant pathogens. The genomes of these bacteria are small with limited metabolic capacities making them dependent on their plant and insect hosts for survival. In contrast to mycoplasmas and other relatives in the class , phytoplasmas encode genes for malate transporters and malic enzyme (ME) for conversion of malate into pyruvate. It was hypothesized that malate is probably a major energy source for phytoplasmas as these bacteria are limited in the uptake and processing of carbohydrates. In this study, we investigated the metabolic capabilities of ‘ (.) phytoplasma’ aster yellows witches’-broom (AYWB) malic enzyme (ME). We found that AYWB-ME has malate oxidative decarboxylation activity, being able to convert malate to pyruvate and CO with the reduction of either NAD or NADP, and displays distinctive kinetic mechanisms depending on the relative concentration of the substrates. AYWB-ME activity was strictly modulated by the ATP/ADP ratio, a feature which has not been found in other ME isoforms characterized to date. In addition, we found that the ‘ Phytoplasma’ AYWB PduL-like enzyme (AYWB-PduL) harbours phosphotransacetylase activity, being able to convert acetyl-CoA to acetyl phosphate downstream of pyruvate. ATP also inhibited AYWB-PduL activity, as with AYWB-ME, and the product of the reaction catalysed by AYWB-PduL, acetyl phosphate, stimulated AYWB-ME activity. Overall, our data indicate that AYWB-ME and AYWB-PduL activities are finely coordinated by common metabolic signals, like ATP/ADP ratios and acetyl phosphate, which support their participation in energy (ATP) and reducing power [NAD(P)H] generation from malate in phytoplasmas.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083469-0
2014-12-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2794.html?itemId=/content/journal/micro/10.1099/mic.0.083469-0&mimeType=html&fmt=ahah

References

  1. André A., Maccheroni W., Doignon F., Garnier M., Renaudin J.. ( 2003;). Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology149:2687–2696 [CrossRef][PubMed]
    [Google Scholar]
  2. Bai X., Zhang J., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D. V., Tsukerman K., Walunas T., Lapidus A.. & other authors ( 2006;). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol188:3682–3696 [CrossRef][PubMed]
    [Google Scholar]
  3. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F.. & other authors ( 2002;). Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A99:10078–10083 [CrossRef][PubMed]
    [Google Scholar]
  4. Bertaccini A.. ( 2007;). Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci12:673–689 [CrossRef][PubMed]
    [Google Scholar]
  5. Bologna F. P., Andreo C. S., Drincovich M. F.. ( 2007;). Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bacteriol189:5937–5946 [CrossRef][PubMed]
    [Google Scholar]
  6. Bologna F. P., Campos-Bermudez V. A., Saavedra D. D., Andreo C. S., Drincovich M. F.. ( 2010;). Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon. J Microbiol48:629–636 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen L.-L., Chung W.-C., Lin C.-P., Kuo C.-H.. ( 2012;). Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas. PLoS ONE7:e34407 [CrossRef][PubMed]
    [Google Scholar]
  8. Coleman D. E., Rao G. S., Goldsmith E. J., Cook P. F., Harris B. G.. ( 2002;). Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 A resolution. Biochemistry41:6928–6938 [CrossRef][PubMed]
    [Google Scholar]
  9. Detarsio E., Alvarez C. E., Saigo M., Andreo C. S., Drincovich M. F.. ( 2007;). Identification of domains involved in tetramerization and malate inhibition of maize C4-NADP-malic enzyme. J Biol Chem282:6053–6060 [CrossRef][PubMed]
    [Google Scholar]
  10. Espariz M., Repizo G., Blancato V., Mortera P., Alarcón S., Magni C.. ( 2011;). Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis . FEBS J278:2140–2151 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1989;). phylip-phylogeny inference package (version 3.2). Cladistics5:164–166
    [Google Scholar]
  12. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  14. Hogenhout S. A., Oshima K., Ammar D., Kakizawa S., Kingdom H. N., Namba S.. ( 2008;). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol9:403–423 [CrossRef][PubMed]
    [Google Scholar]
  15. Jiang P., Du W., Mancuso A., Wellen K. E., Yang X.. ( 2013;). Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature493:689–693[CrossRef]
    [Google Scholar]
  16. Kawai S., Suzuki H., Yamamoto K., Inui M., Yukawa H., Kumagai H.. ( 1996;). Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene. Appl Environ Microbiol62:2692–2700[PubMed]
    [Google Scholar]
  17. Kleijn R. J., Buescher J. M., Le Chat L., Jules M., Aymerich S., Sauer U.. ( 2010;). Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis . J Biol Chem285:1587–1596 [CrossRef][PubMed]
    [Google Scholar]
  18. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E.. ( 2008;). The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics9:306 [CrossRef][PubMed]
    [Google Scholar]
  19. Kube M., Mitrovic J., Duduk B., Rabus R., Seemüller E.. ( 2012;). Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal2012:1-25 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu Y., Leal N. A., Sampson E. M., Johnson C. L., Havemann G. D., Bobik T. A.. ( 2007;). PduL is an evolutionarily distinct phosphotransacylase involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar typhimurium LT2. J Bacteriol189:1589–1596 [CrossRef][PubMed]
    [Google Scholar]
  21. Lo W.-S., Chen L.-L., Chung W.-C., Gasparich G. E., Kuo C.-H.. ( 2013;). Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics14:22 [CrossRef][PubMed]
    [Google Scholar]
  22. MacLean A. M., Orlovskis Z., Kowitwanich K., Zdziarska A. M., Angenent G. C., Immink R. G., Hogenhout S. A.. ( 2014;). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol12:e1001835 [CrossRef][PubMed]
    [Google Scholar]
  23. Meyer F. M., Stülke J.. ( 2013;). Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes. FEMS Microbiol Lett339:17–22 [CrossRef][PubMed]
    [Google Scholar]
  24. Mitsch M. J., Cowie A., Finan T. M.. ( 2007;). Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti . J Bacteriol189:160–168 [CrossRef][PubMed]
    [Google Scholar]
  25. Mortera P., Espariz M., Suárez C., Repizo G., Deutscher J., Alarcón S., Blancato V., Magni C.. ( 2012;). Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis . Appl Environ Microbiol78:1936–1945 [CrossRef][PubMed]
    [Google Scholar]
  26. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C.. & other authors ( 1999;). Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima . Nature399:323–329 [CrossRef][PubMed]
    [Google Scholar]
  27. Oshima K., Maejima K., Namba S.. ( 2013;). Genomic and evolutionary aspects of phytoplasmas. Front Microbiol.4:230 [CrossRef][PubMed]
    [Google Scholar]
  28. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G.. & other authors ( 2012;). The Pfam protein families database. Nucleic Acids Res40:Database issueD290–D301 [CrossRef][PubMed]
    [Google Scholar]
  29. Razin S., Yogev D., Naot Y.. ( 1998;). Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev62:1094–1156[PubMed]
    [Google Scholar]
  30. Saigo M., Bologna F. P., Maurino V. G., Detarsio E., Andreo C. S., Drincovich M. F.. ( 2004;). Maize recombinant non-C4 NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol55:97–107 [CrossRef][PubMed]
    [Google Scholar]
  31. Siewert C., Luge T., Duduk B., Seemüller E., Büttner C., Sauer S., Kube M.. ( 2014;). Analysis of expressed genes of the bacterium ‘Candidatus phytoplasma Mali’ highlights key features of virulence and metabolism. PLoS ONE9:e94391 [CrossRef][PubMed]
    [Google Scholar]
  32. Strauss E.. ( 2009;). Microbiology. Phytoplasma research begins to bloom. Science325:388–390 [CrossRef][PubMed]
    [Google Scholar]
  33. Sugio A., Hogenhout S. A.. ( 2012;). The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol15:247–254 [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  35. Tronconi M. A., Gerrard Wheeler M. C., Maurino V. G., Drincovich M. F., Andreo C. S.. ( 2010;). NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control. Biochem J430:295–303 [CrossRef][PubMed]
    [Google Scholar]
  36. Valle E. M., Boggio S. B., Heldt H. W.. ( 1998;). Free amino acid composition of phloem sap and growing fruit in Lycopersicon esculentum . Plant Cell Physiol39:458–461 [CrossRef]
    [Google Scholar]
  37. Weibull J., Ronquist F., Brishammar S.. ( 1990;). Free amino acid composition of leaf exudates and phloem sap: a comparative study in oats and barley. Plant Physiol92:222–226 [CrossRef][PubMed]
    [Google Scholar]
  38. Wheeler M. C., Arias C. L., Tronconi M. A., Maurino V. G., Andreo C. S., Drincovich M. F.. ( 2008;). Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. Plant Mol Biol67:231–242 [CrossRef][PubMed]
    [Google Scholar]
  39. Xu Y., Bhargava G., Wu H., Loeber G., Tong L.. ( 1999;). Crystal structure of human mitochondrial NAD(P)(+)-dependent malic enzyme: a new class of oxidative decarboxylases. Structure7:877–889 [CrossRef][PubMed]
    [Google Scholar]
  40. Yang Z., Tong L.. ( 2000;). Structural studies of a human malic enzyme. Protein Pept Lett7:287–296
    [Google Scholar]
  41. Yang Z., Lanks C. W., Tong L.. ( 2002a;). Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure10:951–960 [CrossRef][PubMed]
    [Google Scholar]
  42. Yang Z., Zhang H., Hung H. C., Kuo C.-C., Tsai L. C., Yuan H. S., Chou W. Y., Chang G. G., Tong L.. ( 2002b;). Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme. Protein Sci11:332–341 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhao Y., Davis R. E., Lee I. M.. ( 2005;). Phylogenetic positions of ‘Candidatus Phytoplasma asteris’ and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. Int J Syst Evol Microbiol55:2131–2141 [CrossRef][PubMed]
    [Google Scholar]
  44. Zimmerman M. D., Proudfoot M., Yakunin A., Minor W.. ( 2008;). Structural insight into the mechanism of substrate specificity and catalytic activity of an HD-domain phosphohydrolase: the 5′-deoxyribonucleotidase YfbR from Escherichia coli. . J Mol Biol378:215–226 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083469-0
Loading
/content/journal/micro/10.1099/mic.0.083469-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error