1887

Abstract

The zinc uptake regulator (Zur) was shown to negatively regulate the zinc uptake genes , encoding a zinc transport system belonging to the ATP-binding cassette (ABC) transporter family, and , which encodes a periplasmic zinc-binding protein. The expression of and was inducible when cells were grown in medium containing a metal chelator (EDTA), and this induction was shown to be specific for zinc depletion. The expression of was reduced in response to increased zinc in a dose-dependent manner, and had a less pronounced but similar pattern of zinc-regulated expression. The inactivation of led to constitutively high expression of and . In addition, a mutant had an increased total zinc content compared to the WT NTL4 strain, whereas the inactivation of caused a reduction in the total zinc content. The gene is shown to play a dominant role and to be more important than and for survival under zinc deprivation. ZinT can function even when ZnuABC is inactivated. However, mutations in , , or did not affect the virulence of .

Funding
This study was supported by the:
  • Thailand Research Fund Royal Golden Jubilee Scholarship (Award PHD52K0207)
  • Chulabhorn Research Institute
  • Thailand Research Fund (Award RSA5380004)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082446-0
2014-11-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2452.html?itemId=/content/journal/micro/10.1099/mic.0.082446-0&mimeType=html&fmt=ahah

References

  1. Aagaard A., Brzezinski P. ( 2001). Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. FEBS Lett 494:157–160 [View Article][PubMed]
    [Google Scholar]
  2. Akanuma G., Nanamiya H., Natori Y., Nomura N., Kawamura F. ( 2006). Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. . J Bacteriol 188:2715–2720 [View Article][PubMed]
    [Google Scholar]
  3. Alexeyev M. F. ( 1999). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–826, 828[PubMed]
    [Google Scholar]
  4. Ammendola S., Pasquali P., Pistoia C., Petrucci P., Petrarca P., Rotilio G., Battistoni A. ( 2007). High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. . Infect Immun 75:5867–5876 [View Article][PubMed]
    [Google Scholar]
  5. Beard S. J., Hughes M. N., Poole R. K. ( 1995). Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210 [View Article][PubMed]
    [Google Scholar]
  6. Berducci G., Mazzetti A. P., Rotilio G., Battistoni A. ( 2004). Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. FEBS Lett 569:289–292 [View Article][PubMed]
    [Google Scholar]
  7. Bhubhanil S., Chamsing J., Sittipo P., Chaoprasid P., Sukchawalit R., Mongkolsuk S. ( 2014a). Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology 160:863–871 [View Article][PubMed]
    [Google Scholar]
  8. Bhubhanil S., Niamyim P., Sukchawalit R., Mongkolsuk S. ( 2014b). Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. . Microbiology 160:79–90 [View Article][PubMed]
    [Google Scholar]
  9. Blencowe D. K., Morby A. P. ( 2003). Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311 [View Article][PubMed]
    [Google Scholar]
  10. Bobrov A. G., Kirillina O., Fetherston J. D., Miller M. C., Burlison J. A., Perry R. D. ( 2014). The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 93:759–775[PubMed] [CrossRef]
    [Google Scholar]
  11. Campoy S., Jara M., Busquets N., Pérez De Rozas A. M., Badiola I., Barbé J. ( 2002). Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 70:4721–4725 [View Article][PubMed]
    [Google Scholar]
  12. Cangelosi G. A., Best E. A., Martinetti G., Nester E. W. ( 1991). Genetic analysis of Agrobacterium. . Methods Enzymol 204:384–397 [View Article][PubMed]
    [Google Scholar]
  13. Corbett D., Wang J., Schuler S., Lopez-Castejon G., Glenn S., Brough D., Andrew P. W., Cavet J. S., Roberts I. S. ( 2012). Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. . Infect Immun 80:14–21 [View Article][PubMed]
    [Google Scholar]
  14. Davis L. M., Kakuda T., DiRita V. J. ( 2009). A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol 191:1631–1640 [View Article][PubMed]
    [Google Scholar]
  15. Desrosiers D. C., Sun Y. C., Zaidi A. A., Eggers C. H., Cox D. L., Radolf J. D. ( 2007). The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol 65:137–152 [View Article][PubMed]
    [Google Scholar]
  16. Desrosiers D. C., Bearden S. W., Mier I. Jr, Abney J., Paulley J. T., Fetherston J. D., Salazar J. C., Radolf J. D., Perry R. D. ( 2010). Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 78:5163–5177 [View Article][PubMed]
    [Google Scholar]
  17. Dintilhac A., Alloing G., Granadel C., Claverys J. P. ( 1997). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 [View Article][PubMed]
    [Google Scholar]
  18. Dowd G. C., Casey P. G., Begley M., Hill C., Gahan C. G. ( 2012). Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. . FEMS Microbiol Lett 327:118–125 [View Article][PubMed]
    [Google Scholar]
  19. Feng Y., Li M., Zhang H., Zheng B., Han H., Wang C., Yan J., Tang J., Gao G. F. ( 2008). Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 190:7567–7578 [View Article][PubMed]
    [Google Scholar]
  20. Ferianc P., Farewell A., Nyström T. ( 1998). The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050 [View Article][PubMed]
    [Google Scholar]
  21. Gabbianelli R., Scotti R., Ammendola S., Petrarca P., Nicolini L., Battistoni A. ( 2011). Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol 11:36 [View Article][PubMed]
    [Google Scholar]
  22. Gabriel S. E., Helmann J. D. ( 2009). Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol 191:6116–6122 [View Article][PubMed]
    [Google Scholar]
  23. Graham A. I., Hunt S., Stokes S. L., Bramall N., Bunch J., Cox A. G., McLeod C. W., Poole R. K. ( 2009). Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins. J Biol Chem 284:18377–18389 [View Article][PubMed]
    [Google Scholar]
  24. Grant S. G., Jessee J., Bloom F. R., Hanahan D. ( 1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [View Article][PubMed]
    [Google Scholar]
  25. Grass G., Wong M. D., Rosen B. P., Smith R. L., Rensing C. ( 2002). ZupT is a Zn(II) uptake system in Escherichia coli. . J Bacteriol 184:864–866 [View Article][PubMed]
    [Google Scholar]
  26. Grass G., Franke S., Taudte N., Nies D. H., Kucharski L. M., Maguire M. E., Rensing C. ( 2005). The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611 [View Article][PubMed]
    [Google Scholar]
  27. Guerinot M. L. ( 2000). The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198 [View Article][PubMed]
    [Google Scholar]
  28. Hantke K. ( 2005). Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202 [View Article][PubMed]
    [Google Scholar]
  29. Hwang I., Cook D. M., Farrand S. K. ( 1995). A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177:449–458[PubMed]
    [Google Scholar]
  30. Ilari A., Alaleona F., Tria G., Petrarca P., Battistoni A., Zamparelli C., Verzili D., Falconi M., Chiancone E. ( 2014). The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc. Biochim Biophys Acta 1840:535–544 [View Article][PubMed]
    [Google Scholar]
  31. Kamoun S., Hamada W., Huitema E. ( 2003). Agrosuppression: a bioassay for the hypersensitive response suited to high-throughput screening. Mol Plant Microbe Interact 16:7–13 [View Article][PubMed]
    [Google Scholar]
  32. Kasahara M., Anraku Y. ( 1974). Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. Mechanism of selective inhibition of the systems by zinc ions. J Biochem 76:967–976[PubMed]
    [Google Scholar]
  33. Kershaw C. J., Brown N. L., Hobman J. L. ( 2007). Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem Biophys Res Commun 364:66–71 [View Article][PubMed]
    [Google Scholar]
  34. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop II R. M., Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  35. Lewis D. A., Klesney-Tait J., Lumbley S. R., Ward C. K., Latimer J. L., Ison C. A., Hansen E. J. ( 1999). Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi. . Infect Immun 67:5060–5068[PubMed]
    [Google Scholar]
  36. Lu D., Boyd B., Lingwood C. A. ( 1997). Identification of the key protein for zinc uptake in Hemophilus influenzae. . J Biol Chem 272:29033–29038 [View Article][PubMed]
    [Google Scholar]
  37. Lucarelli D., Russo S., Garman E., Milano A., Meyer-Klaucke W., Pohl E. ( 2007). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. . J Biol Chem 282:9914–9922 [View Article][PubMed]
    [Google Scholar]
  38. Luo Z. Q., Clemente T. E., Farrand S. K. ( 2001). Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14:98–103 [View Article][PubMed]
    [Google Scholar]
  39. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. ( 1996). Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [View Article][PubMed]
    [Google Scholar]
  40. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M. & other authors ( 2004). Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283 [View Article][PubMed]
    [Google Scholar]
  41. Ngok-Ngam P., Ruangkiattikul N., Mahavihakanont A., Virgem S. S., Sukchawalit R., Mongkolsuk S. ( 2009). Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 191:2083–2090 [View Article][PubMed]
    [Google Scholar]
  42. Nielubowicz G. R., Smith S. N., Mobley H. L. ( 2010). Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 78:2823–2833 [View Article][PubMed]
    [Google Scholar]
  43. Nies D. H. ( 2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339 [View Article][PubMed]
    [Google Scholar]
  44. Nies D. H. ( 2007). Biochemistry. How cells control zinc homeostasis. Science 317:1695–1696 [View Article][PubMed]
    [Google Scholar]
  45. Outten C. E., O’Halloran T. V. ( 2001). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492 [View Article][PubMed]
    [Google Scholar]
  46. Outten C. E., Tobin D. A., Penner-Hahn J. E., O’Halloran T. V. ( 2001). Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423 [View Article][PubMed]
    [Google Scholar]
  47. Panina E. M., Mironov A. A., Gelfand M. S. ( 2003). Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 100:9912–9917 [View Article][PubMed]
    [Google Scholar]
  48. Patzer S. I., Hantke K. ( 1998). The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. . Mol Microbiol 28:1199–1210 [View Article][PubMed]
    [Google Scholar]
  49. Patzer S. I., Hantke K. ( 2000). The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. . J Biol Chem 275:24321–24332 [View Article][PubMed]
    [Google Scholar]
  50. Petrarca P., Ammendola S., Pasquali P., Battistoni A. ( 2010). The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. J Bacteriol 192:1553–1564 [View Article][PubMed]
    [Google Scholar]
  51. Rosadini C. V., Gawronski J. D., Raimunda D., Argüello J. M., Akerley B. J. ( 2011). A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. Infect Immun 79:3366–3376 [View Article][PubMed]
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  53. Shin J. H., Oh S. Y., Kim S. J., Roe J. H. ( 2007). The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077 [View Article][PubMed]
    [Google Scholar]
  54. Singh A. P., Bragg P. D. ( 1974). Inhibition of energization of Salmonella typhimurium membrane by zinc ions. FEBS Lett 40:200–202 [View Article][PubMed]
    [Google Scholar]
  55. Tang D. J., Li X. J., He Y. Q., Feng J. X., Chen B., Tang J. L. ( 2005). The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. . Mol Plant Microbe Interact 18:652–658 [View Article][PubMed]
    [Google Scholar]
  56. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L., Wood G. E. & other authors ( 2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323 [View Article][PubMed]
    [Google Scholar]
  57. Yang X., Becker T., Walters N., Pascual D. W. ( 2006). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against WT challenge. Infect Immun 74:3874–3879 [View Article][PubMed]
    [Google Scholar]
  58. Yang W., Liu Y., Chen L., Gao T., Hu B., Zhang D., Liu F. ( 2007). Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. Curr Microbiol 54:307–314 [View Article][PubMed]
    [Google Scholar]
  59. Zheng B., Zhang Q., Gao J., Han H., Li M., Zhang J., Qi J., Yan J., Gao G. F. ( 2011). Insight into the interaction of metal ions with TroA from Streptococcus suis. . PLoS ONE 6:e19510 [View Article][PubMed]
    [Google Scholar]
  60. Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., Winans S. C. ( 2000). The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082446-0
Loading
/content/journal/micro/10.1099/mic.0.082446-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error