1887

Abstract

The zinc uptake regulator (Zur) was shown to negatively regulate the zinc uptake genes , encoding a zinc transport system belonging to the ATP-binding cassette (ABC) transporter family, and , which encodes a periplasmic zinc-binding protein. The expression of and was inducible when cells were grown in medium containing a metal chelator (EDTA), and this induction was shown to be specific for zinc depletion. The expression of was reduced in response to increased zinc in a dose-dependent manner, and had a less pronounced but similar pattern of zinc-regulated expression. The inactivation of led to constitutively high expression of and . In addition, a mutant had an increased total zinc content compared to the WT NTL4 strain, whereas the inactivation of caused a reduction in the total zinc content. The gene is shown to play a dominant role and to be more important than and for survival under zinc deprivation. ZinT can function even when ZnuABC is inactivated. However, mutations in , , or did not affect the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082446-0
2014-11-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2452.html?itemId=/content/journal/micro/10.1099/mic.0.082446-0&mimeType=html&fmt=ahah

References

  1. Aagaard A., Brzezinski P.. ( 2001;). Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. FEBS Lett494:157–160 [CrossRef][PubMed]
    [Google Scholar]
  2. Akanuma G., Nanamiya H., Natori Y., Nomura N., Kawamura F.. ( 2006;). Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. . J Bacteriol188:2715–2720 [CrossRef][PubMed]
    [Google Scholar]
  3. Alexeyev M. F.. ( 1999;). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques26:824–826, 828[PubMed]
    [Google Scholar]
  4. Ammendola S., Pasquali P., Pistoia C., Petrucci P., Petrarca P., Rotilio G., Battistoni A.. ( 2007;). High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. . Infect Immun75:5867–5876 [CrossRef][PubMed]
    [Google Scholar]
  5. Beard S. J., Hughes M. N., Poole R. K.. ( 1995;). Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett131:205–210 [CrossRef][PubMed]
    [Google Scholar]
  6. Berducci G., Mazzetti A. P., Rotilio G., Battistoni A.. ( 2004;). Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. FEBS Lett569:289–292 [CrossRef][PubMed]
    [Google Scholar]
  7. Bhubhanil S., Chamsing J., Sittipo P., Chaoprasid P., Sukchawalit R., Mongkolsuk S.. ( 2014a;). Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology160:863–871 [CrossRef][PubMed]
    [Google Scholar]
  8. Bhubhanil S., Niamyim P., Sukchawalit R., Mongkolsuk S.. ( 2014b;). Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. . Microbiology160:79–90 [CrossRef][PubMed]
    [Google Scholar]
  9. Blencowe D. K., Morby A. P.. ( 2003;). Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev27:291–311 [CrossRef][PubMed]
    [Google Scholar]
  10. Bobrov A. G., Kirillina O., Fetherston J. D., Miller M. C., Burlison J. A., Perry R. D.. ( 2014;). The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol93:759–775[PubMed][CrossRef]
    [Google Scholar]
  11. Campoy S., Jara M., Busquets N., Pérez De Rozas A. M., Badiola I., Barbé J.. ( 2002;). Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun70:4721–4725 [CrossRef][PubMed]
    [Google Scholar]
  12. Cangelosi G. A., Best E. A., Martinetti G., Nester E. W.. ( 1991;). Genetic analysis of Agrobacterium. . Methods Enzymol204:384–397 [CrossRef][PubMed]
    [Google Scholar]
  13. Corbett D., Wang J., Schuler S., Lopez-Castejon G., Glenn S., Brough D., Andrew P. W., Cavet J. S., Roberts I. S.. ( 2012;). Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. . Infect Immun80:14–21 [CrossRef][PubMed]
    [Google Scholar]
  14. Davis L. M., Kakuda T., DiRita V. J.. ( 2009;). A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. J Bacteriol191:1631–1640 [CrossRef][PubMed]
    [Google Scholar]
  15. Desrosiers D. C., Sun Y. C., Zaidi A. A., Eggers C. H., Cox D. L., Radolf J. D.. ( 2007;). The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol65:137–152 [CrossRef][PubMed]
    [Google Scholar]
  16. Desrosiers D. C., Bearden S. W., Mier I. Jr, Abney J., Paulley J. T., Fetherston J. D., Salazar J. C., Radolf J. D., Perry R. D.. ( 2010;). Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun78:5163–5177 [CrossRef][PubMed]
    [Google Scholar]
  17. Dintilhac A., Alloing G., Granadel C., Claverys J. P.. ( 1997;). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739 [CrossRef][PubMed]
    [Google Scholar]
  18. Dowd G. C., Casey P. G., Begley M., Hill C., Gahan C. G.. ( 2012;). Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. . FEMS Microbiol Lett327:118–125 [CrossRef][PubMed]
    [Google Scholar]
  19. Feng Y., Li M., Zhang H., Zheng B., Han H., Wang C., Yan J., Tang J., Gao G. F.. ( 2008;). Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol190:7567–7578 [CrossRef][PubMed]
    [Google Scholar]
  20. Ferianc P., Farewell A., Nyström T.. ( 1998;). The cadmium-stress stimulon of Escherichia coli K-12. Microbiology144:1045–1050 [CrossRef][PubMed]
    [Google Scholar]
  21. Gabbianelli R., Scotti R., Ammendola S., Petrarca P., Nicolini L., Battistoni A.. ( 2011;). Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol11:36 [CrossRef][PubMed]
    [Google Scholar]
  22. Gabriel S. E., Helmann J. D.. ( 2009;). Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol191:6116–6122 [CrossRef][PubMed]
    [Google Scholar]
  23. Graham A. I., Hunt S., Stokes S. L., Bramall N., Bunch J., Cox A. G., McLeod C. W., Poole R. K.. ( 2009;). Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins. J Biol Chem284:18377–18389 [CrossRef][PubMed]
    [Google Scholar]
  24. Grant S. G., Jessee J., Bloom F. R., Hanahan D.. ( 1990;). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  25. Grass G., Wong M. D., Rosen B. P., Smith R. L., Rensing C.. ( 2002;). ZupT is a Zn(II) uptake system in Escherichia coli. . J Bacteriol184:864–866 [CrossRef][PubMed]
    [Google Scholar]
  26. Grass G., Franke S., Taudte N., Nies D. H., Kucharski L. M., Maguire M. E., Rensing C.. ( 2005;). The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol187:1604–1611 [CrossRef][PubMed]
    [Google Scholar]
  27. Guerinot M. L.. ( 2000;). The ZIP family of metal transporters. Biochim Biophys Acta1465:190–198 [CrossRef][PubMed]
    [Google Scholar]
  28. Hantke K.. ( 2005;). Bacterial zinc uptake and regulators. Curr Opin Microbiol8:196–202 [CrossRef][PubMed]
    [Google Scholar]
  29. Hwang I., Cook D. M., Farrand S. K.. ( 1995;). A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol177:449–458[PubMed]
    [Google Scholar]
  30. Ilari A., Alaleona F., Tria G., Petrarca P., Battistoni A., Zamparelli C., Verzili D., Falconi M., Chiancone E.. ( 2014;). The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc. Biochim Biophys Acta1840:535–544 [CrossRef][PubMed]
    [Google Scholar]
  31. Kamoun S., Hamada W., Huitema E.. ( 2003;). Agrosuppression: a bioassay for the hypersensitive response suited to high-throughput screening. Mol Plant Microbe Interact16:7–13 [CrossRef][PubMed]
    [Google Scholar]
  32. Kasahara M., Anraku Y.. ( 1974;). Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. Mechanism of selective inhibition of the systems by zinc ions. J Biochem76:967–976[PubMed]
    [Google Scholar]
  33. Kershaw C. J., Brown N. L., Hobman J. L.. ( 2007;). Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochem Biophys Res Commun364:66–71 [CrossRef][PubMed]
    [Google Scholar]
  34. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop II R. M., Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  35. Lewis D. A., Klesney-Tait J., Lumbley S. R., Ward C. K., Latimer J. L., Ison C. A., Hansen E. J.. ( 1999;). Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi. . Infect Immun67:5060–5068[PubMed]
    [Google Scholar]
  36. Lu D., Boyd B., Lingwood C. A.. ( 1997;). Identification of the key protein for zinc uptake in Hemophilus influenzae. . J Biol Chem272:29033–29038 [CrossRef][PubMed]
    [Google Scholar]
  37. Lucarelli D., Russo S., Garman E., Milano A., Meyer-Klaucke W., Pohl E.. ( 2007;). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. . J Biol Chem282:9914–9922 [CrossRef][PubMed]
    [Google Scholar]
  38. Luo Z. Q., Clemente T. E., Farrand S. K.. ( 2001;). Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact14:98–103 [CrossRef][PubMed]
    [Google Scholar]
  39. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L.. ( 1996;). Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid35:1–13 [CrossRef][PubMed]
    [Google Scholar]
  40. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M.. & other authors ( 2004;). Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol52:273–283 [CrossRef][PubMed]
    [Google Scholar]
  41. Ngok-Ngam P., Ruangkiattikul N., Mahavihakanont A., Virgem S. S., Sukchawalit R., Mongkolsuk S.. ( 2009;). Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol191:2083–2090 [CrossRef][PubMed]
    [Google Scholar]
  42. Nielubowicz G. R., Smith S. N., Mobley H. L.. ( 2010;). Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun78:2823–2833 [CrossRef][PubMed]
    [Google Scholar]
  43. Nies D. H.. ( 2003;). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev27:313–339 [CrossRef][PubMed]
    [Google Scholar]
  44. Nies D. H.. ( 2007;). Biochemistry. How cells control zinc homeostasis. Science317:1695–1696 [CrossRef][PubMed]
    [Google Scholar]
  45. Outten C. E., O’Halloran T. V.. ( 2001;). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science292:2488–2492 [CrossRef][PubMed]
    [Google Scholar]
  46. Outten C. E., Tobin D. A., Penner-Hahn J. E., O’Halloran T. V.. ( 2001;). Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry40:10417–10423 [CrossRef][PubMed]
    [Google Scholar]
  47. Panina E. M., Mironov A. A., Gelfand M. S.. ( 2003;). Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A100:9912–9917 [CrossRef][PubMed]
    [Google Scholar]
  48. Patzer S. I., Hantke K.. ( 1998;). The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. . Mol Microbiol28:1199–1210 [CrossRef][PubMed]
    [Google Scholar]
  49. Patzer S. I., Hantke K.. ( 2000;). The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. . J Biol Chem275:24321–24332 [CrossRef][PubMed]
    [Google Scholar]
  50. Petrarca P., Ammendola S., Pasquali P., Battistoni A.. ( 2010;). The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. J Bacteriol192:1553–1564 [CrossRef][PubMed]
    [Google Scholar]
  51. Rosadini C. V., Gawronski J. D., Raimunda D., Argüello J. M., Akerley B. J.. ( 2011;). A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. Infect Immun79:3366–3376 [CrossRef][PubMed]
    [Google Scholar]
  52. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  53. Shin J. H., Oh S. Y., Kim S. J., Roe J. H.. ( 2007;). The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol189:4070–4077 [CrossRef][PubMed]
    [Google Scholar]
  54. Singh A. P., Bragg P. D.. ( 1974;). Inhibition of energization of Salmonella typhimurium membrane by zinc ions. FEBS Lett40:200–202 [CrossRef][PubMed]
    [Google Scholar]
  55. Tang D. J., Li X. J., He Y. Q., Feng J. X., Chen B., Tang J. L.. ( 2005;). The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. . Mol Plant Microbe Interact18:652–658 [CrossRef][PubMed]
    [Google Scholar]
  56. Wood D. W., Setubal J. C., Kaul R., Monks D. E., Kitajima J. P., Okura V. K., Zhou Y., Chen L., Wood G. E.. & other authors ( 2001;). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294:2317–2323 [CrossRef][PubMed]
    [Google Scholar]
  57. Yang X., Becker T., Walters N., Pascual D. W.. ( 2006;). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against WT challenge. Infect Immun74:3874–3879 [CrossRef][PubMed]
    [Google Scholar]
  58. Yang W., Liu Y., Chen L., Gao T., Hu B., Zhang D., Liu F.. ( 2007;). Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. Curr Microbiol54:307–314 [CrossRef][PubMed]
    [Google Scholar]
  59. Zheng B., Zhang Q., Gao J., Han H., Li M., Zhang J., Qi J., Yan J., Gao G. F.. ( 2011;). Insight into the interaction of metal ions with TroA from Streptococcus suis. . PLoS ONE6:e19510 [CrossRef][PubMed]
    [Google Scholar]
  60. Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., Winans S. C.. ( 2000;). The bases of crown gall tumorigenesis. J Bacteriol182:3885–3895 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082446-0
Loading
/content/journal/micro/10.1099/mic.0.082446-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error