1887

Abstract

The zinc uptake regulator (Zur) was shown to negatively regulate the zinc uptake genes , encoding a zinc transport system belonging to the ATP-binding cassette (ABC) transporter family, and , which encodes a periplasmic zinc-binding protein. The expression of and was inducible when cells were grown in medium containing a metal chelator (EDTA), and this induction was shown to be specific for zinc depletion. The expression of was reduced in response to increased zinc in a dose-dependent manner, and had a less pronounced but similar pattern of zinc-regulated expression. The inactivation of led to constitutively high expression of and . In addition, a mutant had an increased total zinc content compared to the WT NTL4 strain, whereas the inactivation of caused a reduction in the total zinc content. The gene is shown to play a dominant role and to be more important than and for survival under zinc deprivation. ZinT can function even when ZnuABC is inactivated. However, mutations in , , or did not affect the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082446-0
2014-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2452.html?itemId=/content/journal/micro/10.1099/mic.0.082446-0&mimeType=html&fmt=ahah

References

  1. Aagaard A. , Brzezinski P. . ( 2001; ). Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. . FEBS Lett 494:, 157–160. [CrossRef] [PubMed]
    [Google Scholar]
  2. Akanuma G. , Nanamiya H. , Natori Y. , Nomura N. , Kawamura F. . ( 2006; ). Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. . J Bacteriol 188:, 2715–2720. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alexeyev M. F. . ( 1999; ). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. . Biotechniques 26:, 824–826, 828.[PubMed]
    [Google Scholar]
  4. Ammendola S. , Pasquali P. , Pistoia C. , Petrucci P. , Petrarca P. , Rotilio G. , Battistoni A. . ( 2007; ). High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. . Infect Immun 75:, 5867–5876. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beard S. J. , Hughes M. N. , Poole R. K. . ( 1995; ). Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. . FEMS Microbiol Lett 131:, 205–210. [CrossRef] [PubMed]
    [Google Scholar]
  6. Berducci G. , Mazzetti A. P. , Rotilio G. , Battistoni A. . ( 2004; ). Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. . FEBS Lett 569:, 289–292. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bhubhanil S. , Chamsing J. , Sittipo P. , Chaoprasid P. , Sukchawalit R. , Mongkolsuk S. . ( 2014a; ). Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. . Microbiology 160:, 863–871. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bhubhanil S. , Niamyim P. , Sukchawalit R. , Mongkolsuk S. . ( 2014b; ). Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. . Microbiology 160:, 79–90. [CrossRef] [PubMed]
    [Google Scholar]
  9. Blencowe D. K. , Morby A. P. . ( 2003; ). Zn(II) metabolism in prokaryotes. . FEMS Microbiol Rev 27:, 291–311. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bobrov A. G. , Kirillina O. , Fetherston J. D. , Miller M. C. , Burlison J. A. , Perry R. D. . ( 2014; ). The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. . Mol Microbiol 93:, 759–775.[PubMed] [CrossRef]
    [Google Scholar]
  11. Campoy S. , Jara M. , Busquets N. , Pérez De Rozas A. M. , Badiola I. , Barbé J. . ( 2002; ). Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. . Infect Immun 70:, 4721–4725. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cangelosi G. A. , Best E. A. , Martinetti G. , Nester E. W. . ( 1991; ). Genetic analysis of Agrobacterium. . Methods Enzymol 204:, 384–397. [CrossRef] [PubMed]
    [Google Scholar]
  13. Corbett D. , Wang J. , Schuler S. , Lopez-Castejon G. , Glenn S. , Brough D. , Andrew P. W. , Cavet J. S. , Roberts I. S. . ( 2012; ). Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. . Infect Immun 80:, 14–21. [CrossRef] [PubMed]
    [Google Scholar]
  14. Davis L. M. , Kakuda T. , DiRita V. J. . ( 2009; ). A Campylobacter jejuni znuA orthologue is essential for growth in low-zinc environments and chick colonization. . J Bacteriol 191:, 1631–1640. [CrossRef] [PubMed]
    [Google Scholar]
  15. Desrosiers D. C. , Sun Y. C. , Zaidi A. A. , Eggers C. H. , Cox D. L. , Radolf J. D. . ( 2007; ). The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. . Mol Microbiol 65:, 137–152. [CrossRef] [PubMed]
    [Google Scholar]
  16. Desrosiers D. C. , Bearden S. W. , Mier I. Jr , Abney J. , Paulley J. T. , Fetherston J. D. , Salazar J. C. , Radolf J. D. , Perry R. D. . ( 2010; ). Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. . Infect Immun 78:, 5163–5177. [CrossRef] [PubMed]
    [Google Scholar]
  17. Dintilhac A. , Alloing G. , Granadel C. , Claverys J. P. . ( 1997; ). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. . Mol Microbiol 25:, 727–739. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dowd G. C. , Casey P. G. , Begley M. , Hill C. , Gahan C. G. . ( 2012; ). Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. . FEMS Microbiol Lett 327:, 118–125. [CrossRef] [PubMed]
    [Google Scholar]
  19. Feng Y. , Li M. , Zhang H. , Zheng B. , Han H. , Wang C. , Yan J. , Tang J. , Gao G. F. . ( 2008; ). Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. . J Bacteriol 190:, 7567–7578. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ferianc P. , Farewell A. , Nyström T. . ( 1998; ). The cadmium-stress stimulon of Escherichia coli K-12. . Microbiology 144:, 1045–1050. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gabbianelli R. , Scotti R. , Ammendola S. , Petrarca P. , Nicolini L. , Battistoni A. . ( 2011; ). Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. . BMC Microbiol 11:, 36. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gabriel S. E. , Helmann J. D. . ( 2009; ). Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. . J Bacteriol 191:, 6116–6122. [CrossRef] [PubMed]
    [Google Scholar]
  23. Graham A. I. , Hunt S. , Stokes S. L. , Bramall N. , Bunch J. , Cox A. G. , McLeod C. W. , Poole R. K. . ( 2009; ). Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins. . J Biol Chem 284:, 18377–18389. [CrossRef] [PubMed]
    [Google Scholar]
  24. Grant S. G. , Jessee J. , Bloom F. R. , Hanahan D. . ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. . Proc Natl Acad Sci U S A 87:, 4645–4649. [CrossRef] [PubMed]
    [Google Scholar]
  25. Grass G. , Wong M. D. , Rosen B. P. , Smith R. L. , Rensing C. . ( 2002; ). ZupT is a Zn(II) uptake system in Escherichia coli. . J Bacteriol 184:, 864–866. [CrossRef] [PubMed]
    [Google Scholar]
  26. Grass G. , Franke S. , Taudte N. , Nies D. H. , Kucharski L. M. , Maguire M. E. , Rensing C. . ( 2005; ). The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. . J Bacteriol 187:, 1604–1611. [CrossRef] [PubMed]
    [Google Scholar]
  27. Guerinot M. L. . ( 2000; ). The ZIP family of metal transporters. . Biochim Biophys Acta 1465:, 190–198. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hantke K. . ( 2005; ). Bacterial zinc uptake and regulators. . Curr Opin Microbiol 8:, 196–202. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hwang I. , Cook D. M. , Farrand S. K. . ( 1995; ). A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. . J Bacteriol 177:, 449–458.[PubMed]
    [Google Scholar]
  30. Ilari A. , Alaleona F. , Tria G. , Petrarca P. , Battistoni A. , Zamparelli C. , Verzili D. , Falconi M. , Chiancone E. . ( 2014; ). The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc. . Biochim Biophys Acta 1840:, 535–544. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kamoun S. , Hamada W. , Huitema E. . ( 2003; ). Agrosuppression: a bioassay for the hypersensitive response suited to high-throughput screening. . Mol Plant Microbe Interact 16:, 7–13. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kasahara M. , Anraku Y. . ( 1974; ). Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. Mechanism of selective inhibition of the systems by zinc ions. . J Biochem 76:, 967–976.[PubMed]
    [Google Scholar]
  33. Kershaw C. J. , Brown N. L. , Hobman J. L. . ( 2007; ). Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. . Biochem Biophys Res Commun 364:, 66–71. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kovach M. E. , Elzer P. H. , Hill D. S. , Robertson G. T. , Farris M. A. , Roop II R. M. , Peterson K. M. . ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lewis D. A. , Klesney-Tait J. , Lumbley S. R. , Ward C. K. , Latimer J. L. , Ison C. A. , Hansen E. J. . ( 1999; ). Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi. . Infect Immun 67:, 5060–5068.[PubMed]
    [Google Scholar]
  36. Lu D. , Boyd B. , Lingwood C. A. . ( 1997; ). Identification of the key protein for zinc uptake in Hemophilus influenzae. . J Biol Chem 272:, 29033–29038. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lucarelli D. , Russo S. , Garman E. , Milano A. , Meyer-Klaucke W. , Pohl E. . ( 2007; ). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. . J Biol Chem 282:, 9914–9922. [CrossRef] [PubMed]
    [Google Scholar]
  38. Luo Z. Q. , Clemente T. E. , Farrand S. K. . ( 2001; ). Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. . Mol Plant Microbe Interact 14:, 98–103. [CrossRef] [PubMed]
    [Google Scholar]
  39. Metcalf W. W. , Jiang W. , Daniels L. L. , Kim S. K. , Haldimann A. , Wanner B. L. . ( 1996; ). Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. . Plasmid 35:, 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  40. Nanamiya H. , Akanuma G. , Natori Y. , Murayama R. , Kosono S. , Kudo T. , Kobayashi K. , Ogasawara N. , Park S. M. . & other authors ( 2004; ). Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. . Mol Microbiol 52:, 273–283. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ngok-Ngam P. , Ruangkiattikul N. , Mahavihakanont A. , Virgem S. S. , Sukchawalit R. , Mongkolsuk S. . ( 2009; ). Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. . J Bacteriol 191:, 2083–2090. [CrossRef] [PubMed]
    [Google Scholar]
  42. Nielubowicz G. R. , Smith S. N. , Mobley H. L. . ( 2010; ). Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. . Infect Immun 78:, 2823–2833. [CrossRef] [PubMed]
    [Google Scholar]
  43. Nies D. H. . ( 2003; ). Efflux-mediated heavy metal resistance in prokaryotes. . FEMS Microbiol Rev 27:, 313–339. [CrossRef] [PubMed]
    [Google Scholar]
  44. Nies D. H. . ( 2007; ). Biochemistry. How cells control zinc homeostasis. . Science 317:, 1695–1696. [CrossRef] [PubMed]
    [Google Scholar]
  45. Outten C. E. , O’Halloran T. V. . ( 2001; ). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. . Science 292:, 2488–2492. [CrossRef] [PubMed]
    [Google Scholar]
  46. Outten C. E. , Tobin D. A. , Penner-Hahn J. E. , O’Halloran T. V. . ( 2001; ). Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. . Biochemistry 40:, 10417–10423. [CrossRef] [PubMed]
    [Google Scholar]
  47. Panina E. M. , Mironov A. A. , Gelfand M. S. . ( 2003; ). Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. . Proc Natl Acad Sci U S A 100:, 9912–9917. [CrossRef] [PubMed]
    [Google Scholar]
  48. Patzer S. I. , Hantke K. . ( 1998; ). The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. . Mol Microbiol 28:, 1199–1210. [CrossRef] [PubMed]
    [Google Scholar]
  49. Patzer S. I. , Hantke K. . ( 2000; ). The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. . J Biol Chem 275:, 24321–24332. [CrossRef] [PubMed]
    [Google Scholar]
  50. Petrarca P. , Ammendola S. , Pasquali P. , Battistoni A. . ( 2010; ). The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. . J Bacteriol 192:, 1553–1564. [CrossRef] [PubMed]
    [Google Scholar]
  51. Rosadini C. V. , Gawronski J. D. , Raimunda D. , Argüello J. M. , Akerley B. J. . ( 2011; ). A novel zinc binding system, ZevAB, is critical for survival of nontypeable Haemophilus influenzae in a murine lung infection model. . Infect Immun 79:, 3366–3376. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  53. Shin J. H. , Oh S. Y. , Kim S. J. , Roe J. H. . ( 2007; ). The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). . J Bacteriol 189:, 4070–4077. [CrossRef] [PubMed]
    [Google Scholar]
  54. Singh A. P. , Bragg P. D. . ( 1974; ). Inhibition of energization of Salmonella typhimurium membrane by zinc ions. . FEBS Lett 40:, 200–202. [CrossRef] [PubMed]
    [Google Scholar]
  55. Tang D. J. , Li X. J. , He Y. Q. , Feng J. X. , Chen B. , Tang J. L. . ( 2005; ). The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. . Mol Plant Microbe Interact 18:, 652–658. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wood D. W. , Setubal J. C. , Kaul R. , Monks D. E. , Kitajima J. P. , Okura V. K. , Zhou Y. , Chen L. , Wood G. E. . & other authors ( 2001; ). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. . Science 294:, 2317–2323. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yang X. , Becker T. , Walters N. , Pascual D. W. . ( 2006; ). Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against WT challenge. . Infect Immun 74:, 3874–3879. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yang W. , Liu Y. , Chen L. , Gao T. , Hu B. , Zhang D. , Liu F. . ( 2007; ). Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. . Curr Microbiol 54:, 307–314. [CrossRef] [PubMed]
    [Google Scholar]
  59. Zheng B. , Zhang Q. , Gao J. , Han H. , Li M. , Zhang J. , Qi J. , Yan J. , Gao G. F. . ( 2011; ). Insight into the interaction of metal ions with TroA from Streptococcus suis. . PLoS ONE 6:, e19510. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zhu J. , Oger P. M. , Schrammeijer B. , Hooykaas P. J. , Farrand S. K. , Winans S. C. . ( 2000; ). The bases of crown gall tumorigenesis. . J Bacteriol 182:, 3885–3895. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082446-0
Loading
/content/journal/micro/10.1099/mic.0.082446-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error