1887

Abstract

Cysteine-rich peptides such as metallothioneins (MTs) are involved in metal homeostasis and detoxification in many eukaryotes. We report the characterization and expression of two MT genes, and from the ectomycorrhizal fungus under metal stress conditions. and differ with respect to the length of the encoded peptides (58 versus 37 aa, respectively) and also by their expression patterns in response to metals. The expression levels of both and increased as a function of increased external Cu concentration, the expression levels for were always significantly higher compared with those of . Only , but not , responded to Cd supply in the range of 25–100 µM while Zn did not affect the transcription of either or 2. Both genes also responded to oxidative stress, but to a lesser extent compared to their responses to either Cu or Cd stress. Heterologous complementation assays in metal-sensitive yeast mutants indicated that both and encode peptides capable of conferring higher tolerance to both Cu and Cd. The present study identified as potential determinants of the response of this mycorrhizal fungus to Cu and Cd stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080218-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2235.html?itemId=/content/journal/micro/10.1099/mic.0.080218-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Averbeck N. B., Borghouts C., Hamann A., Specke V., Osiewacz H. D.. ( 2001;). Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina.. Mol Gen Genet 264:, 604–612. [CrossRef][PubMed]
    [Google Scholar]
  3. Ayres R. U.. ( 1992;). Toxic heavy metals: materials cycle optimization. . Proc Natl Acad Sci U S A 89:, 815–820. [CrossRef][PubMed]
    [Google Scholar]
  4. Bauman J. W., Liu J., Liu Y. P., Klaassen C. D.. ( 1991;). Increase in metallothionein produced by chemicals that induce oxidative stress. . Toxicol Appl Pharmacol 110:, 347–354. [CrossRef][PubMed]
    [Google Scholar]
  5. Bellion M., Courbot M., Jacob C., Blaudez D., Chalot M.. ( 2006;). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. . FEMS Microbiol Lett 254:, 173–181. [CrossRef][PubMed]
    [Google Scholar]
  6. Bellion M., Courbot M., Jacob C., Guinet F., Blaudez D., Chalot M.. ( 2007;). Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum.. New Phytol 174:, 151–158. [CrossRef][PubMed]
    [Google Scholar]
  7. Butt T. R., Sternberg E. J., Gorman J. A., Clark P., Hamer D., Rosenberg M., Crooke S. T.. ( 1984;). Copper metallothionein of yeast, structure of the gene, and regulation of expression. . Proc Natl Acad Sci U S A 81:, 3332–3336. [CrossRef][PubMed]
    [Google Scholar]
  8. Capdevila, M. & Atrian, S. (2011). Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16, 977–989.
  9. Cobbett C., Goldsbrough P.. ( 2002;). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. . Annu Rev Plant Biol 53:, 159–182. [CrossRef][PubMed]
    [Google Scholar]
  10. Cobine P. A., McKay R. T., Zangger K., Dameron C. T., Armitage I. M.. ( 2004;). Solution structure of Cu6 metallothionein from the fungus Neurospora crassa.. Eur J Biochem 271:, 4213–4221. [CrossRef][PubMed]
    [Google Scholar]
  11. Colpaert J. V., van Assche J. A.. ( 1993;). The effects of cadmium on ectomycorrhizal Pinus sylvestris L. . New Phytol 123:, 325–333. [CrossRef]
    [Google Scholar]
  12. Colpaert, J.V., Wevers, J.H.L., Krznaric, E. & Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann Forest Sci 68, 17–24.
  13. Courbot M., Diez L., Ruotolo R., Chalot M., Leroy P.. ( 2004;). Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus.. Appl Environ Microbiol 70:, 7413–7417. [CrossRef][PubMed]
    [Google Scholar]
  14. Culotta V. C., Howard W. R., Liu X. F.. ( 1994;). CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae.. J Biol Chem 269:, 25295–25302.[PubMed]
    [Google Scholar]
  15. Dixon R. K., Buschena C. A.. ( 1988;). Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. . Plant Soil 105:, 265–271. [CrossRef]
    [Google Scholar]
  16. Gadd G. M.. ( 1993;). Interactions of fungi with toxic metals. . New Phytol 124:, 25–60. [CrossRef]
    [Google Scholar]
  17. Gay G.. ( 1990;). Effect of the ectomycorrhizal fungus Hebeloma hiemale on adventitious root formation in derooted Pinus halepensis shoot hypocotyls. . Can J Bot 68:, 1265–1270. [CrossRef]
    [Google Scholar]
  18. González-Guerrero M., Cano C., Azcón-Aguilar C., Ferrol N.. ( 2007;). GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. . Mycorrhiza 17:, 327–335. [CrossRef][PubMed]
    [Google Scholar]
  19. Hamer D. H., Thiele D. J., Lemontt J. E.. ( 1985;). Function and autoregulation of yeast copperthionein. . Science 228:, 685–690. [CrossRef][PubMed]
    [Google Scholar]
  20. Heid C. A., Stevens J., Livak K. J., Williams P. M.. ( 1996;). Real time quantitative PCR. . Genome Res 6:, 986–994. [CrossRef][PubMed]
    [Google Scholar]
  21. Howe R., Evans R. L., Ketteridge S. W.. ( 1997;). Copper-binding proteins in ectomycorrhizal fungi. . New Phytol 135:, 123–131. [CrossRef]
    [Google Scholar]
  22. Hwang C. S., Kolattukudy P. E.. ( 1995;). Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. . Mol Gen Genet 247:, 282–294. [CrossRef][PubMed]
    [Google Scholar]
  23. Jacob C., Courbot M., Martin F., Brun A., Chalot M.. ( 2004;). Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. . FEBS Lett 576:, 423–427. [CrossRef][PubMed]
    [Google Scholar]
  24. Kuge, S. & Jones, N. (1994). YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13, 655–664.
  25. Lanfranco L., Bolchi A., Ros E. C., Ottonello S., Bonfante P.. ( 2002;). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. . Plant Physiol 130:, 58–67. [CrossRef][PubMed]
    [Google Scholar]
  26. Lerch K.. ( 1980;). Copper metallothionein, a copper-binding protein from Neurospora crassa.. Nature 284:, 368–370. [CrossRef][PubMed]
    [Google Scholar]
  27. Leverrier, P., Montigny, C., Garrigos, M. & Champeil, P. (2007). Metal binding to ligands: cadmium complexes with glutathione revisited. Annal Biochem 371, 215–228.
  28. Loebus J., Leitenmaier B., Meissner D., Braha B., Krauss G. J., Dobritzsch D., Freisinger E.. ( 2013;). The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. . J Inorg Biochem 127:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  29. Martin F., Aerts A., Ahrén D., Brun A., Danchin E. G., Duchaussoy F., Gibon J., Kohler A., Lindquist E.. & other authors ( 2008;). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. . Nature 452:, 88–92. [CrossRef][PubMed]
    [Google Scholar]
  30. Mehra R. K., Garey J. R., Butt T. R., Gray W. R., Winge D. R.. ( 1989;). Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. . J Biol Chem 264:, 19747–19753.[PubMed]
    [Google Scholar]
  31. Melin E.. ( 1953;). Physiology of mycorrhizal relations in plants. . Annu Rev Plant Physiol 4:, 325–346. [CrossRef]
    [Google Scholar]
  32. Mir G., Domènech J., Huguet G., Guo W. J., Goldsbrough P., Atrian S., Molinas M.. ( 2004;). A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. . J Exp Bot 55:, 2483–2493. [CrossRef][PubMed]
    [Google Scholar]
  33. Mumberg D., Müller R., Funk M.. ( 1995;). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. . Gene 156:, 119–122. [CrossRef][PubMed]
    [Google Scholar]
  34. Okuyama M., Kobayashi Y., Inouhe M., Tohoyama H., Joho M.. ( 1999;). Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiae.. Biometals 12:, 307–314. [CrossRef][PubMed]
    [Google Scholar]
  35. Osobová M., Urban V., Jedelský P. L., Borovička J., Gryndler M., Ruml T., Kotrba P.. ( 2011;). Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis.. New Phytol 190:, 916–926. [CrossRef][PubMed]
    [Google Scholar]
  36. Pagani A., Villarreal L., Capdevila M., Atrian S.. ( 2007;). The Saccharomyces cerevisiae Crs5 Metallothionein metal-binding abilities and its role in the response to zinc overload. . Mol Microbiol 63:, 256–269. [CrossRef][PubMed]
    [Google Scholar]
  37. Ramesh G., Podila G. K., Gay G., Marmeisse R., Reddy M. S.. ( 2009;). Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. . Appl Environ Microbiol 75:, 2266–2274. [CrossRef][PubMed]
    [Google Scholar]
  38. Ruytinx, J., Nguyen, H., Van Hees, M., Op De Beeck, M., Vangronsveld, J., Carleer, R., Colpaert, J. V. & Adriaensen, K. (2013). Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5, 1225–1233.
  39. Sácký J., Leonhardt T., Borovička J., Gryndler M., Briksí A., Kotrba P.. ( 2014;). Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. . Fungal Genet Biol 67:, 3–14. [CrossRef][PubMed]
    [Google Scholar]
  40. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY, USA:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  41. Smith S., Read D. J.. ( 1997;). Mycorrhizal Symbiosis. USA:: Academic Press;.
    [Google Scholar]
  42. Stearns T., Ma H., Botstein D.. ( 1990;). Manipulating yeast genome using plasmid vectors. . Methods Enzymol 185:, 280–297. [CrossRef][PubMed]
    [Google Scholar]
  43. Waalkes M. P., Goering P. L.. ( 1990;). Metallothionein and other cadmium-binding proteins: recent developments. . Chem Res Toxicol 3:, 281–288. [CrossRef][PubMed]
    [Google Scholar]
  44. Wu A., Wemmie J. A., Edgington N. P., Goebl M., Guevara J. L., Moye-Rowley W. S.. ( 1993;). Yeast bZip proteins mediate pleiotropic drug and metal resistance. . J Biol Chem 268:, 18850–18858.[PubMed]
    [Google Scholar]
  45. Zhang S., Li J., Wang C. C., Tsou C. L.. ( 1999;). Metal regulation of metallothionein participation in redox reactions. . FEBS Lett 462:, 383–386. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080218-0
Loading
/content/journal/micro/10.1099/mic.0.080218-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error