1887

Abstract

Bacterial natural genetic competence – well studied in – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in , encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.

Funding
This study was supported by the:
  • Bundesministerium für Bildung und Forschung (BMBF) (Award Fkz 0315283)
  • BMBF
  • Graduate School of Renewable Resources of the Westfälische-Wilhelms-Universität Münster
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079236-0
2014-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2136.html?itemId=/content/journal/micro/10.1099/mic.0.079236-0&mimeType=html&fmt=ahah

References

  1. Albano M., Smits W. K., Ho L. T., Kraigher B., Mandic-Mulec I., Kuipers O. P., Dubnau D. ( 2005). The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187:2010–2019 [View Article][PubMed]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. ( 1961). Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746[PubMed]
    [Google Scholar]
  3. Bacon Schneider K., Palmer T. M., Grossman A. D. ( 2002). Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 184:410–419 [View Article][PubMed]
    [Google Scholar]
  4. Burkholder P. R., Giles N. H. Jr ( 1947). Induced biochemical mutations in Bacillus subtilis. Am J Bot 34:345–348 [View Article][PubMed]
    [Google Scholar]
  5. Comella N., Grossman A. D. ( 2005). Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol Microbiol 57:1159–1174 [View Article][PubMed]
    [Google Scholar]
  6. Dahl M. K., Msadek T., Kunst F., Rapoport G. ( 1991). Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J Bacteriol 173:2539–2547[PubMed]
    [Google Scholar]
  7. Dahl M. K., Msadek T., Kunst F., Rapoport G. ( 1992). The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267:14509–14514[PubMed]
    [Google Scholar]
  8. Dubnau D. ( 1999). DNA uptake in bacteria. Annu Rev Microbiol 53:217–244 [View Article][PubMed]
    [Google Scholar]
  9. Gwinn D. D., Thorne C. B. ( 1964). Transformation of Bacillus licheniformis. J Bacteriol 87:519–526[PubMed]
    [Google Scholar]
  10. Hahn J., Dubnau D. ( 1991). Growth stage signal transduction and the requirements for srfA induction in development of competence. J Bacteriol 173:7275–7282[PubMed]
    [Google Scholar]
  11. Hahn J., Roggiani M., Dubnau D. ( 1995a). The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 177:3601–3605[PubMed]
    [Google Scholar]
  12. Hahn J., Bylund J., Haines M., Higgins M., Dubnau D. ( 1995b). Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis. Mol Microbiol 18:755–767 [View Article][PubMed]
    [Google Scholar]
  13. Haijema B. J., van Sinderen D., Winterling K., Kooistra J., Venema G., Hamoen L. W. ( 1996). Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol Microbiol 22:75–85 [View Article][PubMed]
    [Google Scholar]
  14. Hamoen L. W., Eshuis H., Jongbloed J., Venema G., van Sinderen D. ( 1995). A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63 [View Article][PubMed]
    [Google Scholar]
  15. Hamoen L. W., Van Werkhoven A. F., Venema G., Dubnau D. ( 2000). The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc Natl Acad Sci U S A 97:9246–9251 [View Article][PubMed]
    [Google Scholar]
  16. Hamoen L. W., Venema G., Kuipers O. P. ( 2003a). Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:9–17 [View Article][PubMed]
    [Google Scholar]
  17. Hamoen L. W., Kausche D., Marahiel M. A., van Sinderen D., Venema G., Serror P. ( 2003b). The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol Lett 218:299–304 [View Article][PubMed]
    [Google Scholar]
  18. Harwood C. R., Cutting S. M. ( 1990). Molecular Biological Methods for Bacillus Chichester: Wiley;
    [Google Scholar]
  19. Heckman K. L., Pease L. R. ( 2007). Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932 [View Article][PubMed]
    [Google Scholar]
  20. Hoa T. T., Tortosa P., Albano M., Dubnau D. ( 2002). Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43:15–26 [View Article][PubMed]
    [Google Scholar]
  21. Hoffmann K., Wollherr A., Larsen M., Rachinger M., Liesegang H., Ehrenreich A., Meinhardt F. ( 2010). Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl Environ Microbiol 76:5046–5057 [View Article][PubMed]
    [Google Scholar]
  22. Hunter S., Jones P., Mitchell A., Apweiler R., Attwood T. K., Bateman A., Bernard T., Binns D., Bork P. & other authors ( 2012). InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:Database issueD306–D312 [View Article][PubMed]
    [Google Scholar]
  23. Johnsborg O., Håvarstein L. S. ( 2009). Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627–642 [View Article][PubMed]
    [Google Scholar]
  24. Johnsborg O., Eldholm V., Håvarstein L. S. ( 2007). Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778 [View Article][PubMed]
    [Google Scholar]
  25. Kobayashi K. ( 2007). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66:395–409 [View Article][PubMed]
    [Google Scholar]
  26. Koomey M. ( 1998). Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl 106:S8456–61 [View Article][PubMed]
    [Google Scholar]
  27. Koumoutsi A., Chen X. H., Henne A., Liesegang H., Hitzeroth G., Franke P., Vater J., Borriss R. ( 2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096 [View Article][PubMed]
    [Google Scholar]
  28. Kovács A. T., Smits W. K., Mirończuk A. M., Kuipers O. P. ( 2009). Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ Microbiol 11:1911–1922 [View Article][PubMed]
    [Google Scholar]
  29. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. & other authors ( 1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256 [View Article][PubMed]
    [Google Scholar]
  30. Lazazzera B. A., Kurtser I. G., McQuade R. S., Grossman A. D. ( 1999). An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181:5193–5200[PubMed]
    [Google Scholar]
  31. Lee C., Kim J., Shin S. G., Hwang S. ( 2006). Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123:273–280 [View Article][PubMed]
    [Google Scholar]
  32. Leonard C. G., Mattheis M. J. ( 1965). Different transforming characteristics of colonial variants from auxotrophic mutants of Bacillus licheniformis. J Bacteriol 90:558–559[PubMed]
    [Google Scholar]
  33. Leonard C. G., Housewright R. D., Thorne C. B. ( 1958). Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 76:499–503[PubMed]
    [Google Scholar]
  34. Leonard C. G., Mattheis D. K., Mattheis M. J., Housewright R. D. ( 1964). Transformation to prototrophy and polyglutamic acid synthesis in Bacillus licheniformis. J Bacteriol 88:220–225[PubMed]
    [Google Scholar]
  35. Lorenz M. G., Wackernagel W. ( 1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602[PubMed]
    [Google Scholar]
  36. Magnuson R., Solomon J., Grossman A. D. ( 1994). Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77:207–216 [View Article][PubMed]
    [Google Scholar]
  37. McCuen R. W., Thorne C. B. ( 1971). Genetic mapping of genes concerned with glutamyl polypeptide production by Bacillus licheniformis and a study of their relationship to the development of competence for transformation. J Bacteriol 107:636–645[PubMed]
    [Google Scholar]
  38. McLoon A. L., Guttenplan S. B., Kearns D. B., Kolter R., Losick R. ( 2011). Tracing the domestication of a biofilm-forming bacterium. J Bacteriol 193:2027–2034 [View Article][PubMed]
    [Google Scholar]
  39. Mirończuk A. M., Kovács Á. T., Kuipers O. P. ( 2008). Induction of natural competence in Bacillus cereus ATCC14579. Microb Biotechnol 1:226–235 [View Article][PubMed]
    [Google Scholar]
  40. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R. ( 1990). Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172:824–834[PubMed]
    [Google Scholar]
  41. Nahrstedt H., Meinhardt F. ( 2004). Structural and functional characterization of the Bacillus megaterium uvrBA locus and generation of UV-sensitive mutants. Appl Microbiol Biotechnol 65:193–199 [View Article][PubMed]
    [Google Scholar]
  42. Nahrstedt H., Wittchen K., Rachman M. A., Meinhardt F. ( 2004). Identification and functional characterization of a type I signal peptidase gene of Bacillus megaterium DSM319. Appl Microbiol Biotechnol 64:243–249 [View Article][PubMed]
    [Google Scholar]
  43. Neubauer S., Dolgova O., Präg G., Borriss R., Makarewicz O. ( 2014). Substitutional analysis of the C-terminal domain of AbrB revealed its essential role in DNA-binding activity. PLoS ONE 9:e97254 [View Article][PubMed]
    [Google Scholar]
  44. Ogura M., Liu L., Lacelle M., Nakano M. M., Zuber P. ( 1999). Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol 32:799–812 [View Article][PubMed]
    [Google Scholar]
  45. Ohsawa T., Tsukahara K., Ogura M. ( 2009). Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73:2096–2102 [View Article][PubMed]
    [Google Scholar]
  46. Persuh M., Turgay K., Mandic-Mulec I., Dubnau D. ( 1999). The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol 33:886–894 [View Article][PubMed]
    [Google Scholar]
  47. Phillips Z. E., Strauch M. A. ( 2001). Role of Cys54 in AbrB multimerization and DNA-binding activity. FEMS Microbiol Lett 203:207–210 [View Article][PubMed]
    [Google Scholar]
  48. Prepiak P., Dubnau D. ( 2007). A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Mol Cell 26:639–647 [View Article][PubMed]
    [Google Scholar]
  49. Rachinger M., Volland S., Meinhardt F., Daniel R., Liesegang H. ( 2013a). First insights into the completely annotated genome sequence of Bacillus licheniformis strain 9945A. Genome Announc1e00525-13
    [Google Scholar]
  50. Rachinger M., Bauch M., Strittmatter A., Bongaerts J., Evers S., Maurer K. H., Daniel R., Liebl W., Liesegang H., Ehrenreich A. ( 2013b). Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis. J Biotechnol 167:365–369 [View Article][PubMed]
    [Google Scholar]
  51. Redfield R. J., Cameron A. D., Qian Q., Hinds J., Ali T. R., Kroll J. S., Langford P. R. ( 2005). A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 347:735–747 [View Article][PubMed]
    [Google Scholar]
  52. Rey M. W., Ramaiya P., Nelson B. A., Brody-Karpin S. D., Zaretsky E. J., Tang M., Lopez de Leon A., Xiang H., Gusti V. & other authors ( 2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77 [View Article][PubMed]
    [Google Scholar]
  53. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: A Laboratory Manual, 3rd edn. vol. 1–3 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  54. Schallmey M., Singh A., Ward O. P. ( 2004). Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17 [View Article][PubMed]
    [Google Scholar]
  55. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  56. Singh P. K., Ramachandran G., Durán-Alcalde L., Alonso C., Wu L. J., Meijer W. J. ( 2012). Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environ Microbiol 14:2812–2825 [View Article][PubMed]
    [Google Scholar]
  57. Solomon J. M., Lazazzera B. A., Grossman A. D. ( 1996). Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10:2014–2024 [View Article][PubMed]
    [Google Scholar]
  58. Southern E. M. ( 1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [View Article][PubMed]
    [Google Scholar]
  59. Spizizen J. ( 1958). Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44:1072–1078 [View Article][PubMed]
    [Google Scholar]
  60. Strauch M. A., Hoch J. A. ( 1993). Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 7:337–342 [View Article][PubMed]
    [Google Scholar]
  61. Strauch M. A., Spiegelman G. B., Perego M., Johnson W. C., Burbulys D., Hoch J. A. ( 1989). The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621[PubMed]
    [Google Scholar]
  62. Thorne C. B., Stull H. B. ( 1966). Factors affecting transformation of Bacillus licheniformis. J Bacteriol 91:1012–1020[PubMed]
    [Google Scholar]
  63. Turgay K., Hamoen L. W., Venema G., Dubnau D. ( 1997). Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11:119–128 [View Article][PubMed]
    [Google Scholar]
  64. Turgay K., Hahn J., Burghoorn J., Dubnau D. ( 1998). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17:6730–6738 [View Article][PubMed]
    [Google Scholar]
  65. van Sinderen D., Venema G. ( 1994). comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis.. J Bacteriol 176:5762–5770[PubMed]
    [Google Scholar]
  66. van Sinderen D., Luttinger A., Kong L., Dubnau D., Venema G., Hamoen L. ( 1995). comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15:455–462 [View Article][PubMed]
    [Google Scholar]
  67. Vary P. S., Biedendieck R., Fuerch T., Meinhardt F., Rohde M., Deckwer W. D., Jahn D. ( 2007). Bacillus megaterium–from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967 [View Article][PubMed]
    [Google Scholar]
  68. Veith B., Herzberg C., Steckel S., Feesche J., Maurer K. H., Ehrenreich P., Bäumer S., Henne A., Liesegang H. & other authors ( 2004). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211 [View Article][PubMed]
    [Google Scholar]
  69. Verhamme D. T., Kiley T. B., Stanley-Wall N. R. ( 2007). DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65:554–568 [View Article][PubMed]
    [Google Scholar]
  70. Waldeck J., Daum G., Bisping B., Meinhardt F. ( 2006). Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885 [View Article][PubMed]
    [Google Scholar]
  71. Waschkau B., Waldeck J., Wieland S., Eichstädt R., Meinhardt F. ( 2008). Generation of readily transformable Bacillus licheniformis mutants. Appl Microbiol Biotechnol 78:181–188 [View Article][PubMed]
    [Google Scholar]
  72. Wemhoff S., Meinhardt F. ( 2013). Generation of biologically contained, readily transformable, and genetically manageable mutants of the biotechnologically important Bacillus pumilus. Appl Microbiol Biotechnol 97:7805–7819 [View Article][PubMed]
    [Google Scholar]
  73. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. ( 1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [View Article][PubMed]
    [Google Scholar]
  74. Xu K., Clark D., Strauch M. A. ( 1996). Analysis of abrB mutations, mutant proteins, and why abrB does not utilize a perfect consensus in the −35 region of its σA promoter. J Biol Chem 271:2621–2626 [View Article][PubMed]
    [Google Scholar]
  75. Zeigler D. R., Prágai Z., Rodriguez S., Chevreux B., Muffler A., Albert T., Bai R., Wyss M., Perkins J. B. ( 2008). The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079236-0
Loading
/content/journal/micro/10.1099/mic.0.079236-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error