1887

Abstract

Upon entering the human gastrointestinal tract, foodborne bacterial enteropathogens encounter, among numerous other stress conditions, nutrient competition with the host organism and the commensal microbiota. The main carbon, nitrogen and energy sources exploited by pathogens during proliferation in, and colonization of, the gut have, however, not been identified completely. In recent years, a huge body of literature has provided evidence that most enteropathogens are equipped with a large set of specific metabolic pathways to overcome nutritional limitations , thus increasing bacterial fitness during infection. These adaptations include the degradation of -inositol, ethanolamine cleaved from phospholipids, fucose derived from mucosal glycoconjugates, 1,2-propanediol as the fermentation product of fucose or rhamnose and several other metabolites not accessible for commensal bacteria or present in competition-free microenvironments. Interestingly, the data reviewed here point to common metabolic strategies of enteric pathogens allowing the exploitation of nutrient sources that not only are present in the gut lumen, the mucosa or epithelial cells, but also are abundant in food. An increased knowledge of the metabolic strategies developed by enteropathogens is therefore a key factor to better control foodborne diseases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078105-0
2014-06-01
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1020.html?itemId=/content/journal/micro/10.1099/mic.0.078105-0&mimeType=html&fmt=ahah

References

  1. Abu Kwaik Y., Bumann D.. ( 2013;). Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol15:882–890 [CrossRef][PubMed]
    [Google Scholar]
  2. Almagro-Moreno S., Boyd E. F.. ( 2009a;). Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol9:118 [CrossRef][PubMed]
    [Google Scholar]
  3. Almagro-Moreno S., Boyd E. F.. ( 2009b;). Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun77:3807–3816 [CrossRef][PubMed]
    [Google Scholar]
  4. Alteri C. J., Mobley H. L.. ( 2012;). Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol15:3–9 [CrossRef][PubMed]
    [Google Scholar]
  5. Alteri C. J., Smith S. N., Mobley H. L.. ( 2009;). Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog5:e1000448 [CrossRef][PubMed]
    [Google Scholar]
  6. Ashida H., Miyake A., Kiyohara M., Wada J., Yoshida E., Kumagai H., Katayama T., Yamamoto K.. ( 2009;). Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology19:1010–1017 [CrossRef][PubMed]
    [Google Scholar]
  7. Backhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I.. ( 2005;). Host-bacterial mutualism in the human intestine. Science307:1915–1920 [CrossRef][PubMed]
    [Google Scholar]
  8. Badía J., Ros J., Aguilar J.. ( 1985;). Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae . J Bacteriol161:435–437[PubMed]
    [Google Scholar]
  9. Barrett E. L., Clark M. A.. ( 1987;). Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev51:192–205[PubMed]
    [Google Scholar]
  10. Barthel M., Hapfelmeier S., Quintanilla-Martínez L., Kremer M., Rohde M., Hogardt M., Pfeffer K., Rüssmann H., Hardt W. D.. ( 2003;). Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun71:2839–2858 [CrossRef][PubMed]
    [Google Scholar]
  11. Becker D. J., Lowe J. B.. ( 2003;). Fucose: biosynthesis and biological function in mammals. Glycobiology13:41R–53R [CrossRef][PubMed]
    [Google Scholar]
  12. Becker D., Selbach M., Rollenhagen C., Ballmaier M., Meyer T. F., Mann M., Bumann D.. ( 2006;). Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature440:303–307 [CrossRef][PubMed]
    [Google Scholar]
  13. Behari J., Youngman P.. ( 1998;). Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun66:3635–3642[PubMed]
    [Google Scholar]
  14. Bertin Y., Girardeau J. P., Chaucheyras-Durand F., Lyan B., Pujos-Guillot E., Harel J., Martin C.. ( 2011;). Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol13:365–377 [CrossRef][PubMed]
    [Google Scholar]
  15. Bode L.. ( 2006;). Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr136:2127–2130[PubMed]
    [Google Scholar]
  16. Borezee E., Pellegrini E., Berche P.. ( 2000;). OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun68:7069–7077 [CrossRef][PubMed]
    [Google Scholar]
  17. Bry L., Falk P. G., Midtvedt T., Gordon J. I.. ( 1996;). A model of host-microbial interactions in an open mammalian ecosystem. Science273:1380–1383 [CrossRef][PubMed]
    [Google Scholar]
  18. Buchrieser C., Rusniok C., Kunst F., Cossart P., Glaser P.. Listeria Consortium ( 2003;). Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol35:207–213 [CrossRef][PubMed]
    [Google Scholar]
  19. Carnell S. C., Bowen A., Morgan E., Maskell D. J., Wallis T. S., Stevens M. P.. ( 2007;). Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. Microbiology153:1940–1952 [CrossRef][PubMed]
    [Google Scholar]
  20. Chang D. E., Smalley D. J., Tucker D. L., Leatham M. P., Norris W. E., Stevenson S. J., Anderson A. B., Grissom J. E., Laux D. C.. & other authors ( 2004;). Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A101:7427–7432 [CrossRef][PubMed]
    [Google Scholar]
  21. Chatterjee S. S., Hossain H., Otten S., Kuenne C., Kuchmina K., Machata S., Domann E., Chakraborty T., Hain T.. ( 2006;). Intracellular gene expression profile of Listeria monocytogenes . Infect Immun74:1323–1338 [CrossRef][PubMed]
    [Google Scholar]
  22. Chaudhuri R. R., Peters S. E., Pleasance S. J., Northen H., Willers C., Paterson G. K., Cone D. B., Allen A. G., Owen P. J.. & other authors ( 2009;). Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice. PLoS Pathog5:e1000529 [CrossRef][PubMed]
    [Google Scholar]
  23. Chaudhuri R. R., Morgan E., Peters S. E., Pleasance S. J., Hudson D. L., Davies H. M., Wang J., van Diemen P. M., Buckley A. M.. & other authors ( 2013;). Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet9:e1003456 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen Y. M., Zhu Y., Lin E. C.. ( 1987;). NAD-linked aldehyde dehydrogenase for aerobic utilization of l-fucose and l-rhamnose by Escherichia coli . J Bacteriol169:3289–3294[PubMed]
    [Google Scholar]
  25. Chen P. E., Cook C., Stewart A. C., Nagarajan N., Sommer D. D., Pop M., Thomason B., Thomason M. P., Lentz S.. & other authors ( 2010;). Genomic characterization of the Yersinia genus. Genome Biol11:R1 [CrossRef][PubMed]
    [Google Scholar]
  26. Cheng S., Sinha S., Fan C., Liu Y., Bobik T. A.. ( 2011;). Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol193:1385–1392[PubMed][CrossRef]
    [Google Scholar]
  27. Cocks G. T., Aguilar T., Lin E. C.. ( 1974;). Evolution of l-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for l-fucose and l-lactate metabolism. J Bacteriol118:83–88[PubMed]
    [Google Scholar]
  28. Conner C. P., Heithoff D. M., Julio S. M., Sinsheimer R. L., Mahan M. J.. ( 1998;). Differential patterns of acquired virulence genes distinguish Salmonella strains. Proc Natl Acad Sci U S A95:4641–4645 [CrossRef][PubMed]
    [Google Scholar]
  29. Contag C. H., Contag P. R., Mullins J. I., Spilman S. D., Stevenson D. K., Benaron D. A.. ( 1995;). Photonic detection of bacterial pathogens in living hosts. Mol Microbiol18:593–603 [CrossRef][PubMed]
    [Google Scholar]
  30. Corazziari E. S.. ( 2009;). Intestinal mucus barrier in normal and inflamed colon. J Pediatr Gastroenterol Nutr48:Suppl. 2S54–S55 [CrossRef][PubMed]
    [Google Scholar]
  31. Cordero-Alba M., Bernal-Bayard J., Ramos-Morales F.. ( 2012;). SrfJ, a Salmonella type III secretion system effector regulated by PhoP, RcsB, and IolR. J Bacteriol194:4226–4236 [CrossRef][PubMed]
    [Google Scholar]
  32. Cummings J. H., Macfarlane G. T.. ( 1991;). The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol70:443–459 [CrossRef][PubMed]
    [Google Scholar]
  33. Cummings J. H., Pomare E. W., Branch W. J., Naylor C. P., Macfarlane G. T.. ( 1987;). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut28:1221–1227 [CrossRef][PubMed]
    [Google Scholar]
  34. Dainty R. H., Shaw B. G., De Boer K. A., Scheps E. S.. ( 1975;). Protein changes caused by bacterial growth on beef. J Appl Bacteriol39:73–81 [CrossRef][PubMed]
    [Google Scholar]
  35. Dalebroux Z. D., Svensson S. L., Gaynor E. C., Swanson M. S.. ( 2010;). ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev74:171–199 [CrossRef][PubMed]
    [Google Scholar]
  36. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., Collini S., Pieraccini G., Lionetti P.. ( 2010;). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A107:14691–14696 [CrossRef][PubMed]
    [Google Scholar]
  37. Deriu E., Liu J. Z., Pezeshki M., Edwards R. A., Ochoa R. J., Contreras H., Libby S. J., Fang F. C., Raffatellu M.. ( 2013;). Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe14:26–37 [CrossRef][PubMed]
    [Google Scholar]
  38. Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M.. ( 2004;). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol54:1469–1476 [CrossRef][PubMed]
    [Google Scholar]
  39. Dobrindt U., Hochhut B., Hentschel U., Hacker J.. ( 2004;). Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol2:414–424 [CrossRef][PubMed]
    [Google Scholar]
  40. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.. ( 2010;). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A107:11971–11975 [CrossRef][PubMed]
    [Google Scholar]
  41. Dupuy B., Daube G., Popoff M. R., Cole S. T.. ( 1997;). Clostridium perfringens urease genes are plasmid borne. Infect Immun65:2313–2320[PubMed]
    [Google Scholar]
  42. Eisenreich W., Dandekar T., Heesemann J., Goebel W.. ( 2010;). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol8:401–412 [CrossRef][PubMed]
    [Google Scholar]
  43. Eylert E., Schär J., Mertins S., Stoll R., Bacher A., Goebel W., Eisenreich W.. ( 2008;). Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol69:1008–1017 [CrossRef][PubMed]
    [Google Scholar]
  44. Fabich A. J., Jones S. A., Chowdhury F. Z., Cernosek A., Anderson A., Smalley D., McHargue J. W., Hightower G. A., Smith J. T.. & other authors ( 2008;). Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun76:1143–1152 [CrossRef][PubMed]
    [Google Scholar]
  45. Forsythe S. J., Parker D. S.. ( 1985;). Nitrogen metabolism by the microbial flora of the rabbit caecum. J Appl Bacteriol58:363–369 [CrossRef][PubMed]
    [Google Scholar]
  46. Fox K. A., Ramesh A., Stearns J. E., Bourgogne A., Reyes-Jara A., Winkler W. C., Garsin D. A.. ( 2009;). Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis . Proc Natl Acad Sci U S A106:4435–4440 [CrossRef][PubMed]
    [Google Scholar]
  47. Freter R., Brickner H., Botney M., Cleven D., Aranki A.. ( 1983;). Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun39:676–685[PubMed]
    [Google Scholar]
  48. Fuchs T. M., Eisenreich W., Heesemann J., Goebel W.. ( 2012a;). Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev36:435–462 [CrossRef][PubMed]
    [Google Scholar]
  49. Fuchs T. M., Eisenreich W., Kern T., Dandekar T.. ( 2012b;). Toward a systemic understanding of Listeria monocytogenes metabolism during infection. Front Microbiol3:23 [CrossRef][PubMed]
    [Google Scholar]
  50. Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J. C., Van Immerseel F.. ( 2006;). Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol72:946–949 [CrossRef][PubMed]
    [Google Scholar]
  51. Garsin D. A.. ( 2010;). Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol8:290–295 [CrossRef][PubMed]
    [Google Scholar]
  52. Giel J. L., Sorg J. A., Sonenshein A. L., Zhu J.. ( 2010;). Metabolism of bile salts in mice influences spore germination in Clostridium difficile . PLoS ONE5:e8740 [CrossRef][PubMed]
    [Google Scholar]
  53. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E.. ( 2006;). Metagenomic analysis of the human distal gut microbiome. Science312:1355–1359 [CrossRef][PubMed]
    [Google Scholar]
  54. Golding G. R., Olson A. B., Doublet B., Cloeckaert A., Christianson S., Graham M. R., Mulvey M. R.. ( 2007;). The effect of the Salmonella genomic island 1 on in vitro global gene expression in Salmonella enterica serovar Typhimurium LT2. Microbes Infect9:21–27 [CrossRef][PubMed]
    [Google Scholar]
  55. Gu Y., Ding Y., Ren C., Sun Z., Rodionov D. A., Zhang W., Yang S., Yang C., Jiang W.. ( 2010;). Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics11:255 [CrossRef][PubMed]
    [Google Scholar]
  56. Hansson G. C.. ( 2012;). Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol15:57–62 [CrossRef][PubMed]
    [Google Scholar]
  57. Haros M., Carlsson N. G., Almgren A., Larsson-Alminger M., Sandberg A. S., Andlid T.. ( 2009;). Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Int J Food Microbiol135:7–14 [CrossRef][PubMed]
    [Google Scholar]
  58. Harvey P. C., Watson M., Hulme S., Jones M. A., Lovell M., Berchieri A. Jr, Young J., Bumstead N., Barrow P.. ( 2011;). Salmonella enterica serovar Typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun79:4105–4121 [CrossRef][PubMed]
    [Google Scholar]
  59. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J. M., Ahmad N., Rhen M., Hinton J. C. D.. ( 2008;). During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol10:958–984 [CrossRef][PubMed]
    [Google Scholar]
  60. Havemann G. D., Sampson E. M., Bobik T. A.. ( 2002;). PduA is a shell protein of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol184:1253–1261 [CrossRef][PubMed]
    [Google Scholar]
  61. Heithoff D. M., Conner C. P., Hentschel U., Govantes F., Hanna P. C., Mahan M. J.. ( 1999;). Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol181:799–807[PubMed]
    [Google Scholar]
  62. Hensel M., Hinsley A. P., Nikolaus T., Sawers G., Berks B. C.. ( 1999a;). The genetic basis of tetrathionate respiration in Salmonella typhimurium . Mol Microbiol32:275–287 [CrossRef][PubMed]
    [Google Scholar]
  63. Hensel M., Nikolaus T., Egelseer C.. ( 1999b;). Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol31:489–498 [CrossRef][PubMed]
    [Google Scholar]
  64. Hooper L. V., Gordon J. I.. ( 2001;). Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology11:1R–10R [CrossRef][PubMed]
    [Google Scholar]
  65. Hooper L. V., Xu J., Falk P. G., Midtvedt T., Gordon J. I.. ( 1999;). A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A96:9833–9838 [CrossRef][PubMed]
    [Google Scholar]
  66. Hooper L. V., Midtvedt T., Gordon J. I.. ( 2002;). How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr22:283–307 [CrossRef][PubMed]
    [Google Scholar]
  67. Hugdahl M. B., Beery J. T., Doyle M. P.. ( 1988;). Chemotactic behavior of Campylobacter jejuni . Infect Immun56:1560–1566[PubMed]
    [Google Scholar]
  68. Jackson T. C.,, Acuff G. R., Dickson J. D.. ( 1997;). Meat, poultry, and seafood. Food Microbiology: Fundamentals and Frontiers83–100 Doyle M. P., Beuchat L. R., Montville T. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  69. Jay J.. ( 2000;). Modern Food Microbiology, 6th edn. Gaithersburg, MD: Aspen; [CrossRef]
    [Google Scholar]
  70. Johansson M. E., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G. C.. ( 2008;). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A105:15064–15069 [CrossRef][PubMed]
    [Google Scholar]
  71. Johansson M. E., Larsson J. M., Hansson G. C.. ( 2011;). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci U S A108:Suppl. 14659–4665 [CrossRef][PubMed]
    [Google Scholar]
  72. Jones S. A., Chowdhury F. Z., Fabich A. J., Anderson A., Schreiner D. M., House A. L., Autieri S. M., Leatham M. P., Lins J. J.. & other authors ( 2007;). Respiration of Escherichia coli in the mouse intestine. Infect Immun75:4891–4899 [CrossRef][PubMed]
    [Google Scholar]
  73. Joseph B., Przybilla K., Stühler C., Schauer K., Slaghuis J., Fuchs T. M., Goebel W.. ( 2006;). Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol188:556–568 [CrossRef][PubMed]
    [Google Scholar]
  74. Juge N.. ( 2012;). Microbial adhesins to gastrointestinal mucus. Trends Microbiol20:30–39 [CrossRef][PubMed]
    [Google Scholar]
  75. Kaiser P., Diard M., Stecher B., Hardt W. D.. ( 2012;). The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunol Rev245:56–83 [CrossRef][PubMed]
    [Google Scholar]
  76. Karpathy S. E., Qin X., Gioia J., Jiang H., Liu Y., Petrosino J. F., Yerrapragada S., Fox G. E., Haake S. K.. & other authors ( 2007;). Genome sequence of Fusobacterium nucleatum subspecies polymorphum – a genetically tractable fusobacterium. PLoS ONE2:e659 [CrossRef][PubMed]
    [Google Scholar]
  77. Katayama T., Sakuma A., Kimura T., Makimura Y., Hiratake J., Sakata K., Yamanoi T., Kumagai H., Yamamoto K.. ( 2004;). Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-l-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol186:4885–4893 [CrossRef][PubMed]
    [Google Scholar]
  78. Keeney K. M., Finlay B. B.. ( 2011;). Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol14:92–98 [CrossRef][PubMed]
    [Google Scholar]
  79. Kelly A., Goldberg M. D., Carroll R. K., Danino V., Hinton J. C., Dorman C. J.. ( 2004;). A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology150:2037–2053 [CrossRef][PubMed]
    [Google Scholar]
  80. Kendall M. M., Gruber C. C., Parker C. T., Sperandio V.. ( 2012;). Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157 : H7. MBio3:e00050-12 [CrossRef][PubMed]
    [Google Scholar]
  81. Klose K. E., Mekalanos J. J.. ( 1997;). Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun65:587–596[PubMed]
    [Google Scholar]
  82. Klumpp J., Fuchs T. M.. ( 2007;). Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology153:1207–1220 [CrossRef][PubMed]
    [Google Scholar]
  83. Kobata A.. ( 2010;). Structures and application of oligosaccharides in human milk. Proc Jpn Acad, Ser B, Phys Biol Sci86:731–747 [CrossRef][PubMed]
    [Google Scholar]
  84. Kofoid E., Rappleye C., Stojiljkovic I., Roth J.. ( 1999;). The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol181:5317–5329[PubMed]
    [Google Scholar]
  85. Korbel J. O., Doerks T., Jensen L. J., Perez-Iratxeta C., Kaczanowski S., Hooper S. D., Andrade M. A., Bork P.. ( 2005;). Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol3:e134 [CrossRef][PubMed]
    [Google Scholar]
  86. Kröger C., Fuchs T. M.. ( 2009;). Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium. J Bacteriol191:545–554 [CrossRef][PubMed]
    [Google Scholar]
  87. Kröger C., Srikumar S., Ellwart J., Fuchs T. M.. ( 2011;). Bistability in myo-inositol utilization by Salmonella enterica serovar Typhimurium. J Bacteriol193:1427–1435 [CrossRef][PubMed]
    [Google Scholar]
  88. Lamichhane-Khadka R., Benoit S. L., Maier S. E., Maier R. J.. ( 2013;). A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence. Open Biol3:130146 [CrossRef][PubMed]
    [Google Scholar]
  89. Lawhon S. D., Frye J. G., Suyemoto M., Porwollik S., McClelland M., Altier C.. ( 2003;). Global regulation by CsrA in Salmonella typhimurium . Mol Microbiol48:1633–1645 [CrossRef][PubMed]
    [Google Scholar]
  90. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M.. ( 2006;). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog2:e11 [CrossRef][PubMed]
    [Google Scholar]
  91. Lawrence J. G., Roth J. R.. ( 1996;). Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics142:11–24[PubMed]
    [Google Scholar]
  92. Le Bouguénec C., Schouler C.. ( 2011;). Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol301:1–6 [CrossRef][PubMed]
    [Google Scholar]
  93. Lindenstrauß, A. (2012).Distribution of virulence factors in Enterococcus faecalis and its adaptation to conditions in the intestinal tract
  94. Lupp C., Robertson M. L., Wickham M. E., Sekirov I., Champion O. L., Gaynor E. C., Finlay B. B.. ( 2007;). Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2:119–129 [CrossRef][PubMed]
    [Google Scholar]
  95. Maadani A., Fox K. A., Mylonakis E., Garsin D. A.. ( 2007;). Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host. Infect Immun75:2634–2637 [CrossRef][PubMed]
    [Google Scholar]
  96. Maccaferri S., Biagi E., Brigidi P.. ( 2011;). Metagenomics: key to human gut microbiota. Dig Dis29:525–530 [CrossRef][PubMed]
    [Google Scholar]
  97. Maier R. J.. ( 2005;). Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem Soc Trans33:83–85 [CrossRef][PubMed]
    [Google Scholar]
  98. Maier R. J., Olczak A., Maier S., Soni S., Gunn J.. ( 2004;). Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect Immun72:6294–6299 [CrossRef][PubMed]
    [Google Scholar]
  99. Maier L., Vyas R., Cordova C. D., Lindsay H., Schmidt T. S. B., Brugiroux S., Periaswamy B., Bauer R., Sturm A.. & other authors ( 2013;). Microbiota-derived hydrogen fuels Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe14:641–651 [CrossRef][PubMed]
    [Google Scholar]
  100. Maltby R., Leatham-Jensen M. P., Gibson T., Cohen P. S., Conway T.. ( 2013;). Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157 : H7 in the mouse intestine. PLoS ONE8:e53957 [CrossRef][PubMed]
    [Google Scholar]
  101. Marteyn B., West N. P., Browning D. F., Cole J. A., Shaw J. G., Palm F., Mounier J., Prévost M.-C., Sansonetti P., Tang C. M.. ( 2010;). Modulation of Shigella virulence in response to available oxygen in vivo . Nature465:355–358 [CrossRef][PubMed]
    [Google Scholar]
  102. Martin F. P., Wang Y., Yap I. K., Sprenger N., Lindon J. C., Rezzi S., Kochhar S., Holmes E., Nicholson J. K.. ( 2009;). Topographical variation in murine intestinal metabolic profiles in relation to microbiome speciation and functional ecological activity. J Proteome Res8:3464–3474 [CrossRef][PubMed]
    [Google Scholar]
  103. Martins dos Santos V., Müller M., de Vos W. M.. ( 2010;). Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Opin Biotechnol21:539–550 [CrossRef][PubMed]
    [Google Scholar]
  104. Matsumoto M., Kibe R., Ooga T., Aiba Y., Kurihara S., Sawaki E., Koga Y., Benno Y.. ( 2012;). Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep2:233 [CrossRef][PubMed]
    [Google Scholar]
  105. Maynard C. L., Elson C. O., Hatton R. D., Weaver C. T.. ( 2012;). Reciprocal interactions of the intestinal microbiota and immune system. Nature489:231–241 [CrossRef][PubMed]
    [Google Scholar]
  106. McCormick B. A., Stocker B. A., Laux D. C., Cohen P. S.. ( 1988;). Roles of motility, chemotaxis, and penetration through and growth in intestinal mucus in the ability of an avirulent strain of Salmonella typhimurium to colonize the large intestine of streptomycin-treated mice. Infect Immun56:2209–2217[PubMed]
    [Google Scholar]
  107. McGuckin M. A., Lindén S. K., Sutton P., Florin T. H.. ( 2011;). Mucin dynamics and enteric pathogens. Nat Rev Microbiol9:265–278 [CrossRef][PubMed]
    [Google Scholar]
  108. McNeil N. I.. ( 1984;). The contribution of the large intestine to energy supplies in man. Am J Clin Nutr39:338–342[PubMed]
    [Google Scholar]
  109. Miller C. P., Bohnhoff M.. ( 1963;). Changes in the mouse’s enteric microflora associated with enhanced susceptibility to Salmonella infection following streptomycin treatment. J Infect Dis113:59–66 [CrossRef][PubMed]
    [Google Scholar]
  110. Miura T., Okamoto K., Yanase H.. ( 2005;). Purification and characterization of extracellular 1,2-α-l-fucosidase from Bacillus cereus . J Biosci Bioeng99:629–635 [CrossRef][PubMed]
    [Google Scholar]
  111. Muraoka W. T., Zhang Q.. ( 2011;). Phenotypic and genotypic evidence for l-fucose utilization by Campylobacter jejuni . J Bacteriol193:1065–1075 [CrossRef][PubMed]
    [Google Scholar]
  112. Ng K. M., Ferreyra J. A., Higginbottom S. K., Lynch J. B., Kashyap P. C., Gopinath S., Naidu N., Choudhury B., Weimer B. C.. & other authors ( 2013;). Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature502:96–99 [CrossRef][PubMed]
    [Google Scholar]
  113. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S.. ( 2012;). Host-gut microbiota metabolic interactions. Science336:1262–1267 [CrossRef][PubMed]
    [Google Scholar]
  114. Njoroge J. W., Nguyen Y., Curtis M. M., Moreira C. G., Sperandio V.. ( 2012;). Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli . MBio3:e00280–12 [CrossRef][PubMed]
    [Google Scholar]
  115. Obradors N., Badía J., Baldomà L., Aguilar J.. ( 1988;). Anaerobic metabolism of the l-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium . J Bacteriol170:2159–2162[PubMed]
    [Google Scholar]
  116. Pacheco A. R., Curtis M. M., Ritchie J. M., Munera D., Waldor M. K., Moreira C. G., Sperandio V.. ( 2012;). Fucose sensing regulates bacterial intestinal colonization. Nature492:113–117 [CrossRef][PubMed]
    [Google Scholar]
  117. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T.. & other authors ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668 [CrossRef][PubMed]
    [Google Scholar]
  118. Penrod J. T., Roth J. R.. ( 2006;). Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica . J Bacteriol188:2865–2874 [CrossRef][PubMed]
    [Google Scholar]
  119. Pham T. A., Lawley T. D.. ( 2014;). Emerging insights on intestinal dysbiosis during bacterial infections. Curr Opin Microbiol17:67–74 [CrossRef][PubMed]
    [Google Scholar]
  120. Poncet S., Milohanic E., Mazé A., Nait Abdallah J., Aké F., Larribe M., Deghmane A.-E., Taha M.-K., Dozot M.. & other authors ( 2009;). Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol16:88–102 [CrossRef][PubMed]
    [Google Scholar]
  121. Power J.. ( 1967;). The l-rhamnose genetic system in Escherichia coli K-12. Genetics55:557–568[PubMed]
    [Google Scholar]
  122. Price-Carter M., Tingey J., Bobik T. A., Roth J. R.. ( 2001;). The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol183:2463–2475 [CrossRef][PubMed]
    [Google Scholar]
  123. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F.. & other authors ( 2010;). A human gut microbial gene catalogue established by metagenomic sequencing. Nature464:59–65 [CrossRef][PubMed]
    [Google Scholar]
  124. Reddy N.. ( 2001;). Occurrence, distribution, content, and dietary intake of phytate. Food Phytates25–51 Reddy N. R., Sathe S. K.. Boca Raton, FL: CRC Press; [CrossRef]
    [Google Scholar]
  125. Robbe C., Capon C., Coddeville B., Michalski J. C.. ( 2004;). Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J384:307–316 [CrossRef][PubMed]
    [Google Scholar]
  126. Rohmer L., Hocquet D., Miller S. I.. ( 2011;). Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol19:341–348 [CrossRef][PubMed]
    [Google Scholar]
  127. Rollenhagen C., Bumann D.. ( 2006;). Salmonella enterica highly expressed genes are disease specific. Infect Immun74:1649–1660 [CrossRef][PubMed]
    [Google Scholar]
  128. Rondon M. R., Escalante-Semerena J. C.. ( 1992;). The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium . J Bacteriol174:2267–2272[PubMed]
    [Google Scholar]
  129. Rondon M. R., Escalante-Semerena J. C.. ( 1996;). In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2. J Bacteriol178:2196–2203[PubMed]
    [Google Scholar]
  130. Rondon M. R., Kazmierczak R., Escalante-Semerena J. C.. ( 1995;). Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol177:5434–5439[PubMed]
    [Google Scholar]
  131. Roth J. R., Lawrence J. G., Bobik T. A.. ( 1996;). Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol50:137–181 [CrossRef][PubMed]
    [Google Scholar]
  132. Ruiz-Albert J., Yu X. J., Beuzón C. R., Blakey A. N., Galyov E. E., Holden D. W.. ( 2002;). Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol Microbiol44:645–661 [CrossRef][PubMed]
    [Google Scholar]
  133. Ruiz-Palacios G. M., Cervantes L. E., Ramos P., Chavez-Munguia B., Newburg D. S.. ( 2003;). Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem278:14112–14120 [CrossRef][PubMed]
    [Google Scholar]
  134. Salazar J. K., Wu Z., McMullen P. D., Luo Q., Freitag N. E., Tortorello M. L., Hu S., Zhang W.. ( 2013;). PrfA-like transcription factor gene lmo0753 contributes to l-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections. Appl Environ Microbiol79:5584–5592 [CrossRef][PubMed]
    [Google Scholar]
  135. Salyers A. A., Pajeau M.. ( 1989;). Competitiveness of different polysaccharide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. Appl Environ Microbiol55:2572–2578[PubMed]
    [Google Scholar]
  136. Sampson E. M., Bobik T. A.. ( 2008;). Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol190:2966–2971 [CrossRef][PubMed]
    [Google Scholar]
  137. Savage D. C.. ( 1977;). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol31:107–133 [CrossRef][PubMed]
    [Google Scholar]
  138. Schär J., Stoll R., Schauer K., Loeffler D. I., Eylert E., Joseph B., Eisenreich W., Fuchs T. M., Goebel W.. ( 2010;). Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes . J Bacteriol192:1774–1784 [CrossRef][PubMed]
    [Google Scholar]
  139. Schauer K., Geginat G., Liang C., Goebel W., Dandekar T., Fuchs T. M.. ( 2010;). Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics11:573 [CrossRef][PubMed]
    [Google Scholar]
  140. Scott K. P., Martin J. C., Campbell G., Mayer C. D., Flint H. J.. ( 2006;). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol188:4340–4349 [CrossRef][PubMed]
    [Google Scholar]
  141. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., Lapidus A., Rokhsar D. S., Lebrilla C. B.. & other authors ( 2008;). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A105:18964–18969 [CrossRef][PubMed]
    [Google Scholar]
  142. Severi E., Hood D. W., Thomas G. H.. ( 2007;). Sialic acid utilization by bacterial pathogens. Microbiology153:2817–2822 [CrossRef][PubMed]
    [Google Scholar]
  143. Sheppard D. E., Roth J. R.. ( 1994;). A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium . J Bacteriol176:1287–1296[PubMed]
    [Google Scholar]
  144. Snider T. A., Fabich A. J., Conway T., Clinkenbeard K. D.. ( 2009;). E. coli O157 : H7 catabolism of intestinal mucin-derived carbohydrates and colonization. Vet Microbiol136:150–154 [CrossRef][PubMed]
    [Google Scholar]
  145. Sonnenburg J. L., Xu J., Leip D. D., Chen C. H., Westover B. P., Weatherford J., Buhler J. D., Gordon J. I.. ( 2005;). Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307:1955–1959 [CrossRef][PubMed]
    [Google Scholar]
  146. Spees A. M., Wangdi T., Lopez C. A., Kingsbury D. D., Xavier M. N., Winter S. E., Tsolis R. M., Bäumler A. J.. ( 2013;). Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio4:e00430-13 [CrossRef][PubMed]
    [Google Scholar]
  147. Srikumar S., Fuchs T. M.. ( 2011;). Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol77:281–290 [CrossRef][PubMed]
    [Google Scholar]
  148. Stahl M., Friis L. M., Nothaft H., Liu X., Li J., Szymanski C. M., Stintzi A.. ( 2011;). l-Fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci U S A108:7194–7199 [CrossRef][PubMed]
    [Google Scholar]
  149. Stahl M., Butcher J., Stintzi A.. ( 2012;). Nutrient acquisition and metabolism by Campylobacter jejuni . Front Cell Infect Microbiol2:5 [CrossRef][PubMed]
    [Google Scholar]
  150. Stams A. J.. ( 1994;). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek66:271–294 [CrossRef][PubMed]
    [Google Scholar]
  151. Stecher B., Hardt W. D.. ( 2008;). The role of microbiota in infectious disease. Trends Microbiol16:107–114 [CrossRef][PubMed]
    [Google Scholar]
  152. Stecher B., Robbiani R., Walker A. W., Westendorf A. M., Barthel M., Kremer M., Chaffron S., Macpherson A. J., Buer J.. & other authors ( 2007;). Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol5:e244 [CrossRef][PubMed]
    [Google Scholar]
  153. Stecher B., Barthel M., Schlumberger M. C., Haberli L., Rabsch W., Kremer M., Hardt W. D.. ( 2008;). Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol10:1166–1180 [CrossRef][PubMed]
    [Google Scholar]
  154. Steeb B., Claudi B., Burton N. A., Tienz P., Schmidt A., Farhan H., Mazé A., Bumann D.. ( 2013;). Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog9:e1003301 [CrossRef][PubMed]
    [Google Scholar]
  155. Steyert S. R., Kaper J. B.. ( 2012;). Contribution of urease to colonization by Shiga toxin-producing Escherichia coli . Infect Immun80:2589–2600 [CrossRef][PubMed]
    [Google Scholar]
  156. Stojiljkovic I., Bäumler A. J., Heffron F.. ( 1995;). Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol177:1357–1366[PubMed]
    [Google Scholar]
  157. Thiennimitr P., Winter S. E., Winter M. G., Xavier M. N., Tolstikov V., Huseby D. L., Sterzenbach T., Tsolis R. M., Roth J. R., Bäumler A. J.. ( 2011;). Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A108:17480–17485 [CrossRef][PubMed]
    [Google Scholar]
  158. Thomson N. R., Howard S., Wren B. W., Holden M. T. G., Crossman L., Challis G. L., Churcher C., Mungall K., Brooks K.. & other authors ( 2006;). The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet2:e206 [CrossRef][PubMed]
    [Google Scholar]
  159. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T.. & other authors ( 2009;). The Listeria transcriptional landscape from saprophytism to virulence. Nature459:950–956 [CrossRef][PubMed]
    [Google Scholar]
  160. Tsoy O., Ravcheev D., Mushegian A.. ( 2009;). Comparative genomics of ethanolamine utilization. J Bacteriol191:7157–7164 [CrossRef][PubMed]
    [Google Scholar]
  161. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A.. & other authors ( 2009;). A core gut microbiome in obese and lean twins. Nature457:480–484 [CrossRef][PubMed]
    [Google Scholar]
  162. Varki A.. ( 1993;). Biological roles of oligosaccharides: all of the theories are correct. Glycobiology3:97–130 [CrossRef][PubMed]
    [Google Scholar]
  163. Velayudhan J., Jones M. A., Barrow P. A., Kelly D. J.. ( 2004;). l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni . Infect Immun72:260–268 [CrossRef][PubMed]
    [Google Scholar]
  164. Wang Y., Holmes E., Comelli E. M., Fotopoulos G., Dorta G., Tang H., Rantalainen M. J., Lindon J. C., Corthésy-Theulaz I. E.. & other authors ( 2007;). Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning 1H NMR spectroscopy. J Proteome Res6:3944–3951 [CrossRef][PubMed]
    [Google Scholar]
  165. Wexler H. M.. ( 2007;). Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev20:593–621 [CrossRef][PubMed]
    [Google Scholar]
  166. Winter S. E., Bäumler A. J.. ( 2014;). Dysbiosis in the inflamed intestine: chance favors the prepared microbe. Gut Microbes5:1–3 [CrossRef][PubMed]
    [Google Scholar]
  167. Winter S. E., Thiennimitr P., Winter M. G., Butler B. P., Huseby D. L., Crawford R. W., Russell J. M., Bevins C. L., Adams L. G.. & other authors ( 2010;). Gut inflammation provides a respiratory electron acceptor for Salmonella. . Nature467:426–429 [CrossRef][PubMed]
    [Google Scholar]
  168. Winter S. E., Winter M. G., Xavier M. N., Thiennimitr P., Poon V., Keestra A. M., Laughlin R. C., Gomez G., Wu J.. & other authors ( 2013;). Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science339:708–711 [CrossRef][PubMed]
    [Google Scholar]
  169. Worley M. J., Ching K. H., Heffron F.. ( 2000;). Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol Microbiol36:749–761 [CrossRef][PubMed]
    [Google Scholar]
  170. Zhang Y., Rodionov D. A., Gelfand M. S., Gladyshev V. N.. ( 2009;). Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics10:78 [CrossRef][PubMed]
    [Google Scholar]
  171. Zheng X., Xie G., Zhao A., Zhao L., Yao C., Chiu N. H. L., Zhou Z., Bao Y., Jia W.. & other authors ( 2011;). The footprints of gut microbial–mammalian co-metabolism. J Proteome Res10:5512–5522 [CrossRef][PubMed]
    [Google Scholar]
  172. Zúñiga M., Comas I., Linaje R., Monedero V., Yebra M. J., Esteban C. D., Deutscher J., Pérez-Martínez G., González-Candelas F.. ( 2005;). Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol22:1673–1685 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078105-0
Loading
/content/journal/micro/10.1099/mic.0.078105-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error