1887

Abstract

We studied the early stages of pellicle formation by on the surface of a liquid medium [air–liquid interface (A–L)]. Using optical and scanning electron microscopy, we showed the formation of a compact biofilm pellicle from micro-colonies over a period of 8–30 h. The cells in the pellicle changed size and cell division pattern during this period. Based on our findings, we created a model of A–L early pellicle formation showing the coordinate growth of cells in the micro-colonies and in the homogeneous film between them, where the accessibility to oxygen and nutrients is different. A proteomic approach utilizing high-resolution two-dimensional gel electrophoresis, in combination with mass spectrometry-based protein identification, was used to analyse the protein expression profiles of the different morphological stages of the pellicle. The proteins identified formed four expression groups; the most interesting of these groups contained the proteins with highest expression in the biofilm development phase, when the floating micro-colonies containing long and more robust cells associate into flocs and start to form a compact pellicle. The majority of these proteins, including GroEL1, are involved in cell wall synthesis or modification, mostly through the involvement of mycolic acid biosynthesis, and their expression maxima correlated with the changes in cell size and the rigidity of the bacterial cell wall observed by scanning electron microscopy.

Funding
This study was supported by the:
  • Grant Agency of the Academy of Sciences of the Czech Republic (Award IAA500200913)
  • Czech Academy of Sciences
  • Institutional Research Concept (Award 61388971 and RVO)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076174-0
2014-07-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1346.html?itemId=/content/journal/micro/10.1099/mic.0.076174-0&mimeType=html&fmt=ahah

References

  1. Branda S. S., Vik S., Friedman L., Kolter R. ( 2005). Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [View Article][PubMed]
    [Google Scholar]
  2. Brennan P. J. ( 2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis.. Tuberculosis (Edinb) 83:91–97 [View Article][PubMed]
    [Google Scholar]
  3. Escuyer V., Haddad N., Frehel C., Berche P. ( 1996). Molecular characterization of a surface-exposed superoxide dismutase of Mycobacterium avium.. Microb Pathog 20:41–55 [View Article][PubMed]
    [Google Scholar]
  4. Friedman L., Kolter R. ( 2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465 [View Article][PubMed]
    [Google Scholar]
  5. Gerth U., Krüger E., Derré I., Msadek T., Hecker M. ( 1998). Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802 [View Article][PubMed]
    [Google Scholar]
  6. Gomez J. E., Bishai W. R. ( 2000). whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97:8554–8559 [View Article][PubMed]
    [Google Scholar]
  7. Hall-Stoodley L., Costerton J. W., Stoodley P. ( 2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 [View Article][PubMed]
    [Google Scholar]
  8. Hall-Stoodley L., Brun O. S., Polshyna G., Barker L. P. ( 2006). Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol Lett 257:43–49 [View Article][PubMed]
    [Google Scholar]
  9. Joyce G., Williams K. J., Robb M., Noens E., Tizzano B., Shahrezaei V., Robertson B. D. ( 2012). Cell division site placement and asymmetric growth in mycobacteria. PLoS ONE 7:e44582 [View Article][PubMed]
    [Google Scholar]
  10. Kirsebom L. A., Dasgupta S., Fredrik Pettersson B. M. ( 2012). Chapter four –pleiomorphism in Mycobacterium.. Adv Appl Microbiol 80:81–112 [View Article][PubMed]
    [Google Scholar]
  11. Kitaura H., Ohara N., Naito M., Kobayashi K., Yamada T. ( 2000). Fibronectin-binding proteins secreted by Mycobacterium avium.. APMIS 108:558–564 [View Article][PubMed]
    [Google Scholar]
  12. Kofroňová O., Nguyen L. D., Weiser J., Benada O. ( 2002). Streptomycetes cultured on glass beads: sample preparation for SEM. Microsc Res Tech 58:111–113 [View Article][PubMed]
    [Google Scholar]
  13. Kohler P. R. A., Choong E. L., Rossbach S. ( 2011). The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.. J Bacteriol 193:5155–5163 [View Article][PubMed]
    [Google Scholar]
  14. Kong T. H., Coates A. R. M., Butcher P. D., Hickman C. J., Shinnick T. M. ( 1993). Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612 [View Article][PubMed]
    [Google Scholar]
  15. Koza A., Hallett P. D., Moon C. D., Spiers A. J. ( 2009). Characterization of a novel air–liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology 155:1397–1406 [View Article][PubMed]
    [Google Scholar]
  16. LeBlanc J. C., Gonçalves E. R., Mohn W. W. ( 2008). Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636 [View Article][PubMed]
    [Google Scholar]
  17. Lemos J. A. C., Burne R. A. ( 2002). Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans.. J Bacteriol 184:6357–6366 [View Article][PubMed]
    [Google Scholar]
  18. López D., Vlamakis H., Kolter R. ( 2010). Biofilms. Cold Spring Harb Perspect Biol 2:a000398 [View Article][PubMed]
    [Google Scholar]
  19. Luong T. T., Sau K., Roux C., Sau S., Dunman P. M., Lee C. Y. ( 2011). Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. J Bacteriol 193:686–694 [View Article][PubMed]
    [Google Scholar]
  20. Mah T. F., O’Toole G. A. ( 2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [View Article][PubMed]
    [Google Scholar]
  21. Mukherjee R., Chatterji D. ( 2008). Proteomics and mass spectrometric studies reveal planktonic growth of Mycobacterium smegmatis in biofilm cultures in the absence of rpoZ. J Chromatogr B Analyt Technol Biomed Life Sci 861:196–202 [View Article][PubMed]
    [Google Scholar]
  22. Nadell C. D., Xavier J. B., Foster K. R. ( 2009). The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224 [View Article][PubMed]
    [Google Scholar]
  23. Nguyen L. D., Kalachová L., Novotná J., Holub M., Kofronová O., Benada O., Thompson C. J., Weiser J. ( 2005). Cultivation system using glass beads immersed in liquid medium facilitates studies of Streptomyces differentiation. Appl Environ Microbiol 71:2848–2852 [View Article][PubMed]
    [Google Scholar]
  24. Nguyen L., Scherr N., Gatfield J., Walburger A., Pieters J., Thompson C. J. ( 2007). Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis.. J Bacteriol 189:7896–7910 [View Article][PubMed]
    [Google Scholar]
  25. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F. ( 2005). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873 [View Article][PubMed]
    [Google Scholar]
  26. Paddick J. S., Brailsford S. R., Rao S., Soares R. F., Kidd E. A. M., Beighton D., Homer K. A. ( 2006). Effect of biofilm growth on expression of surface proteins of Actinomyces naeslundii genospecies 2. Appl Environ Microbiol 72:3774–3779 [View Article][PubMed]
    [Google Scholar]
  27. Patrauchan M. A., Miyazawa D., LeBlanc J. C., Aiga C., Florizone C., Dosanjh M., Davies J., Eltis L. D., Mohn W. W. ( 2012). Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl Environ Microbiol 78:6714–6725 [View Article][PubMed]
    [Google Scholar]
  28. Petráčková D., Šemberová L., Halada P., Svoboda P., Svobodová J. ( 2010). Stress proteins in the cytoplasmic membrane fraction of Bacillus subtilis.. Folia Microbiol (Praha) 55:427–434 [View Article][PubMed]
    [Google Scholar]
  29. Petráčková D., Buriánková K., Tesařová E., Bobková Š., Bezoušková S., Benada O., Kofroňová O., Janeček J., Halada P., Weiser J. ( 2013). Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation. FEMS Microbiol Lett 342:147–156 [View Article][PubMed]
    [Google Scholar]
  30. Raghunand T. R., Bishai W. R. ( 2006). Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent. Microbiology 152:2735–2747 [View Article][PubMed]
    [Google Scholar]
  31. Reynolds T. B. ( 2009). Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology 155:1386–1396 [View Article][PubMed]
    [Google Scholar]
  32. Saraswathi R., Pait Chowdhury R., Williams S. M., Ghatak P., Chatterji D. ( 2009). The mycobacterial MsDps2 protein is a nucleoid-forming DNA binding protein regulated by sigma factors sigma and sigma. PLoS ONE 4:e8017 [View Article][PubMed]
    [Google Scholar]
  33. Scherr N., Nguyen L. ( 2009). Mycobacterium versus Streptomyces—we are different, we are the same. Curr Opin Microbiol 12:699–707 [View Article][PubMed]
    [Google Scholar]
  34. Schmidt F., Donahoe S., Hagens K., Mattow J., Schaible U. E., Kaufmann S. H. E., Aebersold R., Jungblut P. R. ( 2004). Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 3:24–42 [View Article][PubMed]
    [Google Scholar]
  35. Schorey J. S., Sweet L. ( 2008). The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18:832–841 [View Article][PubMed]
    [Google Scholar]
  36. Shi S., Ehrt S. ( 2006). Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74:56–63 [View Article][PubMed]
    [Google Scholar]
  37. Singh V., Mani I., Chaudhary D. K., Somvanshi P. ( 2011). The β-ketoacyl-ACP synthase from Mycobacterium tuberculosis as potential drug targets. Curr Med Chem 18:1318–1324 [View Article][PubMed]
    [Google Scholar]
  38. Singhal N., Sharma P., Kumar M., Joshi B., Bisht D. ( 2012). Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci 10:14 [View Article][PubMed]
    [Google Scholar]
  39. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr ( 1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.. Mol Microbiol 4:1911–1919 [View Article][PubMed]
    [Google Scholar]
  40. Ude S., Arnold D. L., Moon C. D., Timms-Wilson T., Spiers A. J. ( 2006). Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011 [View Article][PubMed]
    [Google Scholar]
  41. Udou T., Ogawa M., Mizuguchi Y. ( 1982). Spheroplast formation of Mycobacterium smegmatis and morphological aspects of their reversion to the bacillary form. J Bacteriol 151:1035–1039[PubMed]
    [Google Scholar]
  42. Vaerewijck M. J., Huys G., Palomino J. C., Swings J., Portaels F. ( 2005). Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev 29:911–934 [View Article][PubMed]
    [Google Scholar]
  43. van Veluw G. J., Petrus M. L. C., Gubbens J., de Graaf R., de Jong I. P., van Wezel G. P., Wösten H. A., Claessen D. ( 2012). Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl Microbiol Biotechnol 96:1301–1312 [View Article][PubMed]
    [Google Scholar]
  44. Wiker H. G., Harboe M. ( 1992). The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis.. Microbiol Rev 56:648–661[PubMed]
    [Google Scholar]
  45. Wilkin J. M., Soetaert K., Stélandre M., Buyssens P., Castillo G., Demoulin V., Bottu G., Laneelle M.-A., Daffe M., De Bruyn J. ( 1999). Overexpression, purification and characterization of Mycobacterium bovis BCG alcohol dehydrogenase. Eur J Biochem 262:299–307 [View Article][PubMed]
    [Google Scholar]
  46. Wu C.-w., Schmoller S. K., Bannantine J. P., Eckstein T. M., Inamine J. M., Livesey M., Albrecht R., Talaat A. M. ( 2009). A novel cell wall lipopeptide is important for biofilm formation and pathogenicity of Mycobacterium avium subspecies paratuberculosis. Microb Pathog 46:222–230 [View Article][PubMed]
    [Google Scholar]
  47. Zambrano M. M., Kolter R. ( 2005). Mycobacterial biofilms: a greasy way to hold it together. Cell 123:762–764 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076174-0
Loading
/content/journal/micro/10.1099/mic.0.076174-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error