1887

Abstract

In several cyanobacteria, , the gene encoding ferredoxin:NADP oxidoreductase (FNR), is transcribed from at least two promoters depending on growth conditions. Two transcripts (short and long) are translated from two different translation initiation sites, resulting in two isoforms (large and small, respectively). Here, we show that in PCC6803 the global transcriptional regulator NtcA activates transcription from the distal promoter. Modification of the NtcA-binding site prevents NtcA binding to the promoter and abolishes accumulation of the small isoform of FNR . We also demonstrate that a similar transcription and translation regime occurs in other cyanobacteria. The conditions under which this system operates provide hints for the function of each FNR isoform.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076042-0
2014-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/789.html?itemId=/content/journal/micro/10.1099/mic.0.076042-0&mimeType=html&fmt=ahah

References

  1. Frías J. E., Flores E., Herrero A.. ( 1994;). Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. . Mol Microbiol 14:, 823–832. [CrossRef][PubMed]
    [Google Scholar]
  2. García-Domínguez M., Reyes J. C., Florencio F. J.. ( 2000;). NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. . Mol Microbiol 35:, 1192–1201. [CrossRef][PubMed]
    [Google Scholar]
  3. Golden J. W., Robinson S. J., Haselkorn R.. ( 1985;). Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. . Nature 314:, 419–423. [CrossRef][PubMed]
    [Google Scholar]
  4. Herrero A., Muro-Pastor A. M., Flores E.. ( 2001;). Nitrogen control in cyanobacteria. . J Bacteriol 183:, 411–425. [CrossRef][PubMed]
    [Google Scholar]
  5. Jiang F., Wisén S., Widersten M., Bergman B., Mannervik B.. ( 2000;). Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. . J Mol Biol 301:, 783–793. [CrossRef][PubMed]
    [Google Scholar]
  6. Körner H., Sofia H. J., Zumft W. G.. ( 2003;). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. . FEMS Microbiol Rev 27:, 559–592. [CrossRef][PubMed]
    [Google Scholar]
  7. Lawson C. L., Swigon D., Murakami K. S., Darst S. A., Berman H. M., Ebright R. H.. ( 2004;). Catabolite activator protein: DNA binding and transcription activation. . Curr Opin Struct Biol 14:, 10–20. [CrossRef][PubMed]
    [Google Scholar]
  8. Llácer J. L., Espinosa J., Castells M. A., Contreras A., Forchhammer K., Rubio V.. ( 2010;). Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. . Proc Natl Acad Sci U S A 107:, 15397–15402. [CrossRef][PubMed]
    [Google Scholar]
  9. Ludwig M., Bryant D. A.. ( 2012;). Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. . Front Microbiol 3:, 145. [CrossRef][PubMed]
    [Google Scholar]
  10. Luque I., Forchhammer K.. ( 2008;) Nitrogen assimilation and C/N balance sensing. , in The Cyanobacteria: Molecular Biology, Genomics and Evolution. pp. 335–382. Edited by Herrero A., Flore E... Wymondham:: Caister Academic Press;.
    [Google Scholar]
  11. Mitschke J., Georg J., Scholz I., Sharma C. M., Dienst D., Bantscheff J., Voss B., Steglich C., Wilde A., Vogel J., Hess W. R.. ( 2011a;). An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. . Proc Natl Acad Sci U S A 108:, 2124–2129. [CrossRef][PubMed]
    [Google Scholar]
  12. Mitschke J., Vioque A., Haas F., Hess W. R., Muro-Pastor A. M.. ( 2011b;). Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. . Proc Natl Acad Sci U S A 108:, 20130–20135. [CrossRef][PubMed]
    [Google Scholar]
  13. Muro-Pastor M. I., Reyes J. C., Florencio F. J.. ( 1996;). The NADP+-isocitrate dehydrogenase gene (icd) is nitrogen regulated in cyanobacteria. . J Bacteriol 178:, 4070–4076.[PubMed]
    [Google Scholar]
  14. Muro-Pastor M. I., Reyes J. C., Florencio F. J.. ( 2001;). Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. . J Biol Chem 276:, 38320–38328.[PubMed]
    [Google Scholar]
  15. Omairi-Nasser A., de Gracia A. G., Ajlani G.. ( 2011;). A larger transcript is required for the synthesis of the smaller isoform of ferredoxin : NADP oxidoreductase. . Mol Microbiol 81:, 1178–1189. [CrossRef][PubMed]
    [Google Scholar]
  16. Osanai T., Imamura S., Asayama M., Shirai M., Suzuki I., Murata N., Tanaka K.. ( 2006;). Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. . DNA Res 13:, 185–195. [CrossRef][PubMed]
    [Google Scholar]
  17. Razquin P., Fillat M. F., Schmitz S., Stricker O., Böhme H., Gómez-Moreno C., Peleato M. L.. ( 1996;). Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp. . Biochem J 316:, 157–160.[PubMed]
    [Google Scholar]
  18. Stevens S. E., Porter R. D.. ( 1980;). Transformation in Agmenellum quadruplicatum. . Proc Natl Acad Sci U S A 77:, 6052–6056. [CrossRef][PubMed]
    [Google Scholar]
  19. Thomas J.-C., Ughy B., Lagoutte B., Ajlani G.. ( 2006;). A second isoform of the ferredoxin : NADP oxidoreductase generated by an in-frame initiation of translation. . Proc Natl Acad Sci U S A 103:, 18368–18373. [CrossRef][PubMed]
    [Google Scholar]
  20. Ughy B., Ajlani G.. ( 2004;). Phycobilisome rod mutants in Synechocystis sp. strain PCC6803. . Microbiology 150:, 4147–4156. [CrossRef][PubMed]
    [Google Scholar]
  21. Valladares A., Muro-Pastor A. M., Fillat M. F., Herrero A., Flores E.. ( 1999;). Constitutive and nitrogen-regulated promoters of the petH gene encoding ferredoxin : NADP+ reductase in the heterocyst-forming cyanobacterium Anabaena sp. . FEBS Lett 449:, 159–164. [CrossRef][PubMed]
    [Google Scholar]
  22. Vijayan V., Jain I. H., O’Shea E. K.. ( 2011;). A high resolution map of a cyanobacterial transcriptome. . Genome Biol 12:, R47. [CrossRef][PubMed]
    [Google Scholar]
  23. Zhao M.-X., Jiang Y.-L., He Y.-X., Chen Y.-F., Teng Y.-B., Chen Y., Zhang C.-C., Zhou C.-Z.. ( 2010;). Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. . Proc Natl Acad Sci U S A 107:, 12487–12492. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076042-0
Loading
/content/journal/micro/10.1099/mic.0.076042-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error