1887

Abstract

The alternative sigma factor RpoS in plays a central role in modulating host adaptive responses when spirochaetes cycle between ticks and mammals. The transcriptional activation of σ-dependent requires a Fur homologue designated BosR. Previously, BosR was shown to directly activate transcription by binding to the promoter. However, many other DNA binding features of BosR have remained obscure. In particular, the precise DNA sequence targeted by BosR has not yet been completely elucidated. The prediction of a putative Per box within the promoter region has further confounded the identification of the BosR binding sequence. Herein, by using electrophoretic mobility shift assays, we demonstrate that the putative Per box predicted in the promoter region is not involved in the binding of BosR. Rather, a 13 bp palindromic sequence (ATTTAANTTAAAT) with dyad symmetry, which we denote as the ‘BosR box’, functions as the core sequence recognized by BosR in the promoter region of . Similar to a Fur box and a Per box, the BosR box probably comprises a 6–1–6 inverted repeat composed of two hexamers (ATTTAA) in a head-to-tail orientation. Selected mutations in the BosR box prevented recombinant BosR from binding to . In addition, we found that sequences neighbouring the BosR box also are required for the formation of BosR–DNA complexes. Identification of the BosR box advances our understanding of how BosR recognizes its DNA target(s), and provides new insight into the mechanistic details behind the unique regulatory function of BosR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075655-0
2014-05-01
2021-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/851.html?itemId=/content/journal/micro/10.1099/mic.0.075655-0&mimeType=html&fmt=ahah

References

  1. Antonara S., Ristow L., Coburn J. ( 2011). Adhesion mechanisms of Borrelia burgdorferi. Adv Exp Med Biol 715:35–49 [CrossRef][PubMed]
    [Google Scholar]
  2. Baichoo N., Helmann J. D. ( 2002). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832 [CrossRef][PubMed]
    [Google Scholar]
  3. Bevington P. R., Robinson D. K. ( 1992). Data Reduction and Error Analysis for the Physical Sciences, 2nd edn. Boston, MA: WCB/McGraw-Hill;
    [Google Scholar]
  4. Blevins J. S., Hagman K. E., Norgard M. V. ( 2008). Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8:82 [CrossRef][PubMed]
    [Google Scholar]
  5. Blevins J. S., Xu H., He M., Norgard M. V., Reitzer L., Yang X. F. ( 2009). Rrp2, a σ54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent manner. J Bacteriol 191:2902–2905 [CrossRef][PubMed]
    [Google Scholar]
  6. Boardman B. K., He M., Ouyang Z., Xu H., Pang X., Yang X. F. ( 2008). Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76:3844–3853 [CrossRef][PubMed]
    [Google Scholar]
  7. Boylan J. A., Posey J. E., Gherardini F. C. ( 2003). Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci U S A 100:11684–11689 [CrossRef][PubMed]
    [Google Scholar]
  8. Brautigam C. A. ( 2011). Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods 54:4–15 [CrossRef][PubMed]
    [Google Scholar]
  9. Brooks C. S., Hefty P. S., Jolliff S. E., Akins D. R. ( 2003). Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71:3371–3383 [CrossRef][PubMed]
    [Google Scholar]
  10. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. ( 1982). Lyme disease – a tick-borne spirochetosis. Science 216:1317–1319 [CrossRef][PubMed]
    [Google Scholar]
  11. Burtnick M. N., Downey J. S., Brett P. J., Boylan J. A., Frye J. G., Hoover T. R., Gherardini F. C. ( 2007). Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65:277–293 [CrossRef][PubMed]
    [Google Scholar]
  12. Carpenter B. M., Whitmire J. M., Merrell D. S. ( 2009). This is not your mother’s repressor: the complex role of fur in pathogenesis. Infect Immun 77:2590–2601 [CrossRef][PubMed]
    [Google Scholar]
  13. Charon N. W., Goldstein S. F. ( 2002). Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu Rev Genet 36:47–73 [CrossRef][PubMed]
    [Google Scholar]
  14. Coburn J. ( 2001). Adhesion mechanisms of the Lyme disease spirochete, Borrelia burgdorferi. Curr Drug Targets Infect Disord 1:171–179 [CrossRef][PubMed]
    [Google Scholar]
  15. Coburn J., Cugini C. ( 2003). Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin αvβ3. Proc Natl Acad Sci U S A 100:7301–7306 [CrossRef][PubMed]
    [Google Scholar]
  16. Coleman J. L., Crowley J. T., Toledo A. M., Benach J. L. ( 2013). The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol 88:619–633 [CrossRef][PubMed]
    [Google Scholar]
  17. Dam J., Velikovsky C. A., Mariuzza R. A., Urbanke C., Schuck P. ( 2005). Sedimentation velocity analysis of heterogeneous protein–protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J 89:619–634 [CrossRef][PubMed]
    [Google Scholar]
  18. Duarte V., Latour J. M. ( 2010). PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. Mol Biosyst 6:316–323 [CrossRef][PubMed]
    [Google Scholar]
  19. Dunham-Ems S. M., Caimano M. J., Eggers C. H., Radolf J. D. ( 2012). Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. PLoS Pathog 8:e1002532 [CrossRef][PubMed]
    [Google Scholar]
  20. Escolar L., Pérez-Martín J., de Lorenzo V. ( 1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229[PubMed]
    [Google Scholar]
  21. Fischer J. R., Parveen N., Magoun L., Leong J. M. ( 2003). Decorin-binding proteins A and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A 100:7307–7312 [CrossRef][PubMed]
    [Google Scholar]
  22. Fisher M. A., Grimm D., Henion A. K., Elias A. F., Stewart P. E., Rosa P. A., Gherardini F. C. ( 2005). Borrelia burgdorferi σ54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102:5162–5167 [CrossRef][PubMed]
    [Google Scholar]
  23. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R. & other authors ( 1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586 [CrossRef][PubMed]
    [Google Scholar]
  24. Fuangthong M., Helmann J. D. ( 2003). Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348–6357 [CrossRef][PubMed]
    [Google Scholar]
  25. Gilmore R. D. Jr, Howison R. R., Dietrich G., Patton T. G., Clifton D. R., Carroll J. A. ( 2010). The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission. Proc Natl Acad Sci U S A 107:7515–7520 [CrossRef][PubMed]
    [Google Scholar]
  26. Grimm D., Tilly K., Byram R., Stewart P. E., Krum J. G., Bueschel D. M., Schwan T. G., Policastro P. F., Elias A. F., Rosa P. A. ( 2004). Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101:3142–3147 [CrossRef][PubMed]
    [Google Scholar]
  27. Groshong A. M., Gibbons N. E., Yang X. F., Blevins J. S. ( 2012). Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi. J Bacteriol 194:3336–3342 [CrossRef][PubMed]
    [Google Scholar]
  28. He M., Ouyang Z., Troxell B., Xu H., Moh A., Piesman J., Norgard M. V., Gomelsky M., Yang X. F. ( 2011). Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLoS Pathog 7:e1002133 [CrossRef][PubMed]
    [Google Scholar]
  29. Houtman J. C., Brown P. H., Bowden B., Yamaguchi H., Appella E., Samelson L. E., Schuck P. ( 2007). Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in sedphat: application to adaptor protein complexes in cell signaling. Protein Sci 16:30–42 [CrossRef][PubMed]
    [Google Scholar]
  30. Hübner A., Yang X., Nolen D. M., Popova T. G., Cabello F. C., Norgard M. V. ( 2001). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729 [CrossRef][PubMed]
    [Google Scholar]
  31. Huffman J. L., Brennan R. G. ( 2002). Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12:98–106 [CrossRef][PubMed]
    [Google Scholar]
  32. Hyde J. A., Shaw D. K., Smith R. III, Trzeciakowski J. P., Skare J. T. ( 2009). The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol Microbiol 74:1344–1355 [CrossRef][PubMed]
    [Google Scholar]
  33. Hyde J. A., Shaw D. K., Smith R. III, Trzeciakowski J. P., Skare J. T. ( 2010). Characterization of a conditional bosR mutant in Borrelia burgdorferi. Infect Immun 78:265–274 [CrossRef][PubMed]
    [Google Scholar]
  34. Johnson R. C., Schmid G. P., Hyde F. W., Steigerwalt A. G., Brenner D. J. ( 1984). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34:496–497 [CrossRef]
    [Google Scholar]
  35. Katona L. I., Tokarz R., Kuhlow C. J., Benach J., Benach J. L. ( 2004). The fur homologue in Borrelia burgdorferi. J Bacteriol 186:6443–6456 [CrossRef][PubMed]
    [Google Scholar]
  36. Kung F., Anguita J., Pal U. ( 2013). Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 8:41–56 [CrossRef][PubMed]
    [Google Scholar]
  37. Laue T. M., Shah B. D., Ridgeway T. M., Pelletier S. L. ( 1992) Computer-aided interpretation of analytical sedimentation data for proteins. Analytical Ultracentrifugation in Biochemistry and Polymer Science90–125 Harding S. E., Rowe A. J., Horton J. C. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  38. Lavrrar J. L., McIntosh M. A. ( 2003). Architecture of a fur binding site: a comparative analysis. J Bacteriol 185:2194–2202 [CrossRef][PubMed]
    [Google Scholar]
  39. Lee J. W., Helmann J. D. ( 2007). Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499 [CrossRef][PubMed]
    [Google Scholar]
  40. Liang F. T., Nelson F. K., Fikrig E. ( 2002). Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 196:275–280 [CrossRef][PubMed]
    [Google Scholar]
  41. Liang F. T., Yan J., Mbow M. L., Sviat S. L., Gilmore R. D., Mamula M., Fikrig E. ( 2004). Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72:5759–5767 [CrossRef][PubMed]
    [Google Scholar]
  42. Lybecker M. C., Samuels D. S. ( 2007). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64:1075–1089 [CrossRef][PubMed]
    [Google Scholar]
  43. Makthal N., Rastegari S., Sanson M., Ma Z., Olsen R. J., Helmann J. D., Musser J. M., Kumaraswami M. ( 2013). Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 288:18311–18324 [CrossRef][PubMed]
    [Google Scholar]
  44. Norris S. J. ( 2006a). Antigenic variation with a twist – the Borrelia story. Mol Microbiol 60:1319–1322 [CrossRef][PubMed]
    [Google Scholar]
  45. Norris S. J. ( 2006b). The dynamic proteome of Lyme disease Borrelia. Genome Biol 7:209 [CrossRef][PubMed]
    [Google Scholar]
  46. Norris S. J. ( 2012). How do Lyme borrelia organisms cause disease? The quest for virulence determinants. Open Neurol J 6:119–123 [CrossRef][PubMed]
    [Google Scholar]
  47. Ouyang Z., Blevins J. S., Norgard M. V. ( 2008). Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiology 154:2641–2658 [CrossRef][PubMed]
    [Google Scholar]
  48. Ouyang Z., Kumar M., Kariu T., Haq S., Goldberg M., Pal U., Norgard M. V. ( 2009). BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74:1331–1343 [CrossRef][PubMed]
    [Google Scholar]
  49. Ouyang Z., Haq S., Norgard M. V. ( 2010). Analysis of the dbpBA upstream regulatory region controlled by RpoS in Borrelia burgdorferi. J Bacteriol 192:1965–1974 [CrossRef][PubMed]
    [Google Scholar]
  50. Ouyang Z., Deka R. K., Norgard M. V. ( 2011). BosR (BB0647) controls the RpoN–RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7:e1001272 [CrossRef][PubMed]
    [Google Scholar]
  51. Ouyang Z., Narasimhan S., Neelakanta G., Kumar M., Pal U., Fikrig E., Norgard M. V. ( 2012). Activation of the RpoN–RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. BMC Microbiol 12:44 [CrossRef][PubMed]
    [Google Scholar]
  52. Pal U., Fikrig E. ( 2003). Adaptation of Borrelia burgdorferi in the vector and vertebrate host. Microbes Infect 5:659–666 [CrossRef][PubMed]
    [Google Scholar]
  53. Pal U., Yang X., Chen M., Bockenstedt L. K., Anderson J. F., Flavell R. A., Norgard M. V., Fikrig E. ( 2004). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230 [CrossRef][PubMed]
    [Google Scholar]
  54. Parveen N., Caimano M., Radolf J. D., Leong J. M. ( 2003). Adaptation of the Lyme disease spirochaete to the mammalian host environment results in enhanced glycosaminoglycan and host cell binding. Mol Microbiol 47:1433–1444 [CrossRef][PubMed]
    [Google Scholar]
  55. Pollack R. J., Telford S. R. III, Spielman A. ( 1993). Standardization of medium for culturing Lyme disease spirochetes. J Clin Microbiol 31:1251–1255[PubMed]
    [Google Scholar]
  56. Posey J. E., Gherardini F. C. ( 2000). Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653 [CrossRef][PubMed]
    [Google Scholar]
  57. Radolf J. D., Caimano M. J., Stevenson B., Hu L. T. ( 2012). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99[PubMed]
    [Google Scholar]
  58. Roberts D. M., Caimano M., McDowell J., Theisen M., Holm A., Orff E., Nelson D., Wikel S., Radolf J., Marconi R. T. ( 2002). Environmental regulation and differential production of members of the Bdr protein family of Borrelia burgdorferi. Infect Immun 70:7033–7041 [CrossRef][PubMed]
    [Google Scholar]
  59. Rosa P. A., Tilly K., Stewart P. E. ( 2005). The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3:129–143 [CrossRef][PubMed]
    [Google Scholar]
  60. Samuels D. S. ( 2011). Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499 [CrossRef][PubMed]
    [Google Scholar]
  61. Samuels D. S., Radolf J. D. ( 2009). Who is the BosR around here anyway. Mol Microbiol 74:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  62. Samuels D. S., Radolf J. D. ( 2010). Borrelia: Molecular Biology, Host Interaction and Pathogenesis Wymondham: Caister Academic;
    [Google Scholar]
  63. Scheckelhoff M. R., Telford S. R., Wesley M., Hu L. T. ( 2007). Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A. Proc Natl Acad Sci U S A 104:7247–7252 [CrossRef][PubMed]
    [Google Scholar]
  64. Schuck P. ( 2000). Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619 [CrossRef][PubMed]
    [Google Scholar]
  65. Schuck P. ( 2003). On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320:104–124 [CrossRef][PubMed]
    [Google Scholar]
  66. Schuck P., Demeler B. ( 1999). Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys J 76:2288–2296 [CrossRef][PubMed]
    [Google Scholar]
  67. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. ( 1995). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913 [CrossRef][PubMed]
    [Google Scholar]
  68. Seemanapalli S. V., Xu Q., McShan K., Liang F. T. ( 2010). Outer surface protein C is a dissemination-facilitating factor of Borrelia burgdorferi during mammalian infection. PLoS ONE 5:e15830 [CrossRef][PubMed]
    [Google Scholar]
  69. Shi Y., Xu Q., McShan K., Liang F. T. ( 2008). Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 76:1239–1246 [CrossRef][PubMed]
    [Google Scholar]
  70. Smith A. H., Blevins J. S., Bachlani G. N., Yang X. F., Norgard M. V. ( 2007). Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54N). J Bacteriol 189:2139–2144 [CrossRef][PubMed]
    [Google Scholar]
  71. Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E. ( 1983). The spirochetal etiology of Lyme disease. N Engl J Med 308:733–740 [CrossRef][PubMed]
    [Google Scholar]
  72. Traoré D. A., El Ghazouani A., Ilango S., Dupuy J., Jacquamet L., Ferrer J. L., Caux-Thang C., Duarte V., Latour J. M. ( 2006). Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61:1211–1219 [CrossRef][PubMed]
    [Google Scholar]
  73. Troy E. B., Lin T., Gao L., Lazinski D. W., Camilli A., Norris S. J., Hu L. T. ( 2013). Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 81:2347–2357 [CrossRef][PubMed]
    [Google Scholar]
  74. Weening E. H., Parveen N., Trzeciakowski J. P., Leong J. M., Höök M., Skare J. T. ( 2008). Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun 76:5694–5705 [CrossRef][PubMed]
    [Google Scholar]
  75. Yang X. F., Alani S. M., Norgard M. V. ( 2003). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:11001–11006 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075655-0
Loading
/content/journal/micro/10.1099/mic.0.075655-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error