1887

Abstract

is a Gram-negative opportunistic pathogen with the capacity to cause serious disease, including chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. These infections are treated with high concentrations of antibiotics. Virulence modulation is an important tool utilized by to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified, including the magnesium transporter protein MgtE. We have recently found that isogenic deletion of leads to increased cytotoxicity through effects on the type III secretion system. To explore the role of the CF lung environment in MgtE activity, we investigated transcriptional regulation following antibiotic treatment. Utilizing quantitative real-time-PCR, we have demonstrated an increase in transcript levels following antibiotic treatment with most of the 12 antibiotics tested. To begin to determine the regulatory network governing expression, we screened a transposon-mutant library of to look for mutants with potentially altered activity, using cytotoxicity as a readout. In this screen, we observed that AlgR, which regulates production of the biofilm polysaccharide alginate, alters MgtE-mediated cytotoxicity. This cross-talk between MgtE and AlgR suggests that AlgR is involved in linking external inducing signals (e.g. antibiotics) to transcription and downstream virulence and biofilm activities. Analysing such interactions may lead to a better understanding of how the CF lung environment shapes biofilm infections.

Funding
This study was supported by the:
  • Purdue University
  • NSF (Award NSF-DGE no. 0742475)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070144-0
2014-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/1/165.html?itemId=/content/journal/micro/10.1099/mic.0.070144-0&mimeType=html&fmt=ahah

References

  1. Anderson G. G., Moreau-Marquis S., Stanton B. A., O'Toole G. A. ( 2008). In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun 76:1423–1433 [View Article][PubMed]
    [Google Scholar]
  2. Anderson G. G., Yahr T. L., Lovewell R. R., O'Toole G. A. ( 2010). The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun 78:1239–1249 [View Article][PubMed]
    [Google Scholar]
  3. Aron L., Toth C., Godfrey H. P., Cabello F. C. ( 1996). Identification and mapping of a chromosomal gene cluster of Borrelia burgdorferi containing genes expressed in vivo . FEMS Microbiol Lett 145:309–314 [View Article][PubMed]
    [Google Scholar]
  4. Badia J. R., Soy D., Adrover M., Ferrer M., Sarasa M., Alarcón A., Codina C., Torres A. ( 2004). Disposition of instilled versus nebulized tobramycin and imipenem in ventilated intensive care unit (ICU) patients. J Antimicrob Chemother 54:508–514 [View Article][PubMed]
    [Google Scholar]
  5. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E. P., Høiby N. ( 2004). Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187 [View Article][PubMed]
    [Google Scholar]
  6. Bleves S., Soscia C., Nogueira-Orlandi P., Lazdunski A., Filloux A. ( 2005). Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J Bacteriol 187:3898–3902 [View Article][PubMed]
    [Google Scholar]
  7. Boucher R. C. ( 2002). An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 54:1359–1371 [View Article][PubMed]
    [Google Scholar]
  8. Bruscia E., Sangiuolo F., Sinibaldi P., Goncz K. K., Novelli G., Gruenert D. C. ( 2002). Isolation of CF cell lines corrected at ΔF508-CFTR locus by SFHR-mediated targeting. Gene Ther 9:683–685 [View Article][PubMed]
    [Google Scholar]
  9. Caiazza N. C., O'Toole G. A. ( 2004). SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186:4476–4485 [View Article][PubMed]
    [Google Scholar]
  10. Caiazza N. C., Shanks R. M., O'Toole G. A. ( 2005). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. . J Bacteriol 187:7351–7361 [View Article][PubMed]
    [Google Scholar]
  11. Campodónico V. L., Gadjeva M., Paradis-Bleau C., Uluer A., Pier G. B. ( 2008). Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 14:120–133 [View Article][PubMed]
    [Google Scholar]
  12. Coggan K. A., Wolfgang M. C. ( 2012). Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol 14:47–70[PubMed]
    [Google Scholar]
  13. Cozens A. L., Yezzi M. J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W. E., Widdicombe J. H., Gruenert D. C. ( 1994). CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47 [View Article][PubMed]
    [Google Scholar]
  14. Dasgupta N., Ashare A., Hunninghake G. W., Yahr T. L. ( 2006). Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun 74:3334–3341 [View Article][PubMed]
    [Google Scholar]
  15. Diaz M. R., King J. M., Yahr T. L. ( 2011). Intrinsic and extrinsic regulation of type III secretion gene expression in Pseudomonas aeruginosa . Front Microbiol 2:89[PubMed]
    [Google Scholar]
  16. Emerson J., Rosenfeld M., McNamara S., Ramsey B., Gibson R. L. ( 2002). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100 [View Article][PubMed]
    [Google Scholar]
  17. Gangell C., Gard S., Douglas T., Park J., de Klerk N., Keil T., Brennan S., Ranganathan S., Robins-Browne R. & other authors ( 2011). Inflammatory responses to individual microorganisms in the lungs of children with cystic fibrosis. Clin Infect Dis 53:425–432 [View Article][PubMed]
    [Google Scholar]
  18. Geller D. E., Pitlick W. H., Nardella P. A., Tracewell W. G., Ramsey B. W. ( 2002). Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest 122:219–226 [View Article][PubMed]
    [Google Scholar]
  19. Gibson R. L., Burns J. L., Ramsey B. W. ( 2003). Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951 [View Article][PubMed]
    [Google Scholar]
  20. Gooderham W. J., Hancock R. E. ( 2009). Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. . FEMS Microbiol Rev 33:279–294 [View Article][PubMed]
    [Google Scholar]
  21. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S. ( 2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. . Dev Cell 7:745–754 [View Article][PubMed]
    [Google Scholar]
  22. Goodman A. L., Merighi M., Hyodo M., Ventre I., Filloux A., Lory S. ( 2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23:249–259 [View Article][PubMed]
    [Google Scholar]
  23. Hall-Stoodley L., Costerton J. W., Stoodley P. ( 2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 [View Article][PubMed]
    [Google Scholar]
  24. Hoboth C., Hoffmann R., Eichner A., Henke C., Schmoldt S., Imhof A., Heesemann J., Hogardt M. ( 2009). Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130 [View Article][PubMed]
    [Google Scholar]
  25. Hoffman L. R., D’Argenio D. A., MacCoss M. J., Zhang Z., Jones R. A., Miller S. I. ( 2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175 [View Article][PubMed]
    [Google Scholar]
  26. Ilowite J. S., Gorvoy J. D., Smaldone G. C. ( 1987). Quantitative deposition of aerosolized gentamicin in cystic fibrosis. Am Rev Respir Dis 136:1445–1449 [View Article][PubMed]
    [Google Scholar]
  27. Kakuda T., DiRita V. J. ( 2006). Cj1496c encodes a Campylobacter jejuni glycoprotein that influences invasion of human epithelial cells and colonization of the chick gastrointestinal tract. Infect Immun 74:4715–4723 [View Article][PubMed]
    [Google Scholar]
  28. Khan W., Bernier S. P., Kuchma S. L., Hammond J. H., Hasan F., O'Toole G. A. ( 2010). Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 13:207–212[PubMed]
    [Google Scholar]
  29. Kobayashi H. ( 1995). Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 99:26S–30S [View Article][PubMed]
    [Google Scholar]
  30. Kuchma S. L., Connolly J. P., O'Toole G. A. ( 2005). A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. . J Bacteriol 187:1441–1454 [View Article][PubMed]
    [Google Scholar]
  31. Kulasekara H. D., Ventre I., Kulasekara B. R., Lazdunski A., Filloux A., Lory S. ( 2005). A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380 [View Article][PubMed]
    [Google Scholar]
  32. Laskowski M. A., Osborn E., Kazmierczak B. I. ( 2004). A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. . Mol Microbiol 54:1090–1103 [View Article][PubMed]
    [Google Scholar]
  33. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M. ( 2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [View Article][PubMed]
    [Google Scholar]
  34. Linares J. F., Gustafsson I., Baquero F., Martinez J. L. ( 2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489 [View Article][PubMed]
    [Google Scholar]
  35. Lizewski S. E., Lundberg D. S., Schurr M. J. ( 2002). The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70:6083–6093 [View Article][PubMed]
    [Google Scholar]
  36. Lizewski S. E., Schurr J. R., Jackson D. W., Frisk A., Carterson A. J., Schurr M. J. ( 2004). Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684 [View Article][PubMed]
    [Google Scholar]
  37. MacGregor R. R., Gibson G. A., Bland J. A. ( 1986). Imipenem pharmacokinetics and body fluid concentrations in patients receiving high-dose treatment for serious infections. Antimicrob Agents Chemother 29:188–192 [View Article][PubMed]
    [Google Scholar]
  38. Mah T. F., O'Toole G. A. ( 2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [View Article][PubMed]
    [Google Scholar]
  39. Mathee K., McPherson C. J., Ohman D. E. ( 1997). Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179:3711–3720[PubMed]
    [Google Scholar]
  40. McCaw M. L., Lykken G. L., Singh P. K., Yahr T. L. ( 2002). ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol 46:1123–1133 [View Article][PubMed]
    [Google Scholar]
  41. McCoy K. S., Quittner A. L., Oermann C. M., Gibson R. L., Retsch-Bogart G. Z., Montgomery A. B. ( 2008). Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am J Respir Crit Care Med 178:921–928 [View Article][PubMed]
    [Google Scholar]
  42. McPhee J. B., Lewenza S., Hancock R. E. ( 2003). Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. . Mol Microbiol 50:205–217 [View Article][PubMed]
    [Google Scholar]
  43. McPhee J. B., Bains M., Winsor G., Lewenza S., Kwasnicka A., Brazas M. D., Brinkman F. S., Hancock R. E. ( 2006). Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. . J Bacteriol 188:3995–4006 [View Article][PubMed]
    [Google Scholar]
  44. Merino S., Gavín R., Altarriba M., Izquierdo L., Maguire M. E., Tomás J. M. ( 2001). The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiol Lett 198:189–195 [View Article][PubMed]
    [Google Scholar]
  45. Miao E. A., Freeman J. A., Miller S. I. ( 2002). Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J Bacteriol 184:1493–1497 [View Article][PubMed]
    [Google Scholar]
  46. Moreau-Marquis S., O'Toole G. A., Stanton B. A. ( 2009). Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 41:305–313 [View Article][PubMed]
    [Google Scholar]
  47. Moreau-Marquis S., Redelman C. V., Stanton B. A., Anderson G. G. ( 2010). Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells. J Vis Exp 44:2186[PubMed]
    [Google Scholar]
  48. Morici L. A., Carterson A. J., Wagner V. E., Frisk A., Schurr J. R., Höner zu Bentrup K., Hassett D. J., Iglewski B. H., Sauer K., Schurr M. J. ( 2007). Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764 [View Article][PubMed]
    [Google Scholar]
  49. Mueller R. S., McDougald D., Cusumano D., Sodhi N., Kjelleberg S., Azam F., Bartlett D. H. ( 2007). Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol 189:5348–5360 [View Article][PubMed]
    [Google Scholar]
  50. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. ( 1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902 [View Article][PubMed]
    [Google Scholar]
  51. Rau M. H., Hansen S. K., Johansen H. K., Thomsen L. E., Workman C. T., Nielsen K. F., Jelsbak L., Høiby N., Yang L., Molin S. ( 2010). Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 12:1643–1658[PubMed]
    [Google Scholar]
  52. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N. & other authors ( 1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073 [View Article][PubMed]
    [Google Scholar]
  53. Rowen D. W., Deretic V. ( 2000). Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 36:314–327 [View Article][PubMed]
    [Google Scholar]
  54. Sauer K., Cullen M. C., Rickard A. H., Zeef L. A., Davies D. G., Gilbert P. ( 2004). Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326 [View Article][PubMed]
    [Google Scholar]
  55. Shanks R. M., Caiazza N. C., Hinsa S. M., Toutain C. M., O'Toole G. A. ( 2006). Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 72:5027–5036 [View Article][PubMed]
    [Google Scholar]
  56. Siegmund I., Wagner F. ( 1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268 [View Article]
    [Google Scholar]
  57. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  58. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M. ( 2008). Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. . Antimicrob Agents Chemother 52:3648–3663 [View Article][PubMed]
    [Google Scholar]
  59. Strandvik B., Malmborg A. S., Alfredson H., Ericsson A. ( 1983). Clinical results and pharmacokinetics of ceftazidime treatment in patients with cystic fibrosis. J Antimicrob Chemother 12:Suppl. A283–287 [View Article][PubMed]
    [Google Scholar]
  60. Stutman H. R., Shalit I., Marks M. I., Greenwood R., Chartrand S. A., Hilman B. C. ( 1987). Pharmacokinetics of two dosage regimens of ciprofloxacin during a two-week therapeutic trial in patients with cystic fibrosis. Am J Med 82:142–145[PubMed]
    [Google Scholar]
  61. Swiatecka-Urban A., Brown A., Moreau-Marquis S., Renuka J., Coutermarsh B., Barnaby R., Karlson K. H., Flotte T. R., Fukuda M. & other authors ( 2005). The short apical membrane half-life of rescued ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of ΔF508-CFTR in polarized human airway epithelial cells. J Biol Chem 280:36762–36772 [View Article][PubMed]
    [Google Scholar]
  62. Tolker-Nielsen T., Brinch U. C., Ragas P. C., Andersen J. B., Jacobsen C. S., Molin S. ( 2000). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489 [View Article][PubMed]
    [Google Scholar]
  63. Trautmann M., Lepper P. M., Haller M. ( 2005). Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Control 33:Suppl. 1S41–S49 [View Article][PubMed]
    [Google Scholar]
  64. Tuomanen E., Cozens R., Tosch W., Zak O., Tomasz A. ( 1986). The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304[PubMed]
    [Google Scholar]
  65. Twiss J., Byrnes C., Johnson R., Holland D. ( 2005). Nebulised gentamicin-suitable for childhood bronchiectasis. Int J Pharm 295:113–119 [View Article][PubMed]
    [Google Scholar]
  66. van Delden C., Comte R., Bally A. M. ( 2001). Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. . J Bacteriol 183:5376–5384 [View Article][PubMed]
    [Google Scholar]
  67. Warwick G., Elston C. ( 2011). Improving outcomes in patients with cystic fibrosis. Practitioner 255:29–32, 3[PubMed]
    [Google Scholar]
  68. Whitchurch C. B., Alm R. A., Mattick J. S. ( 1996). The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 93:9839–9843 [View Article][PubMed]
    [Google Scholar]
  69. Wilms E. B., Touw D. J., Heijerman H. G. ( 2008). Pharmacokinetics and sputum penetration of azithromycin during once weekly dosing in cystic fibrosis patients. J Cyst Fibros 7:79–84 [View Article][PubMed]
    [Google Scholar]
  70. Wingender J., Flemming H. C. ( 2011). Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423 [View Article][PubMed]
    [Google Scholar]
  71. Wood L. F., Leech A. J., Ohman D. E. ( 2006). Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22(AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426 [View Article][PubMed]
    [Google Scholar]
  72. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K. C., Birrer P., Bellon G., Berger J. & other authors ( 2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325[PubMed] [CrossRef]
    [Google Scholar]
  73. Wu W., Badrane H., Arora S., Baker H. V., Jin S. ( 2004). MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. . J Bacteriol 186:7575–7585 [View Article][PubMed]
    [Google Scholar]
  74. Yahr T. L., Wolfgang M. C. ( 2006). Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 62:631–640 [View Article][PubMed]
    [Google Scholar]
  75. Yu H., Mudd M., Boucher J. C., Schurr M. J., Deretic V. ( 1997). Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. . J Bacteriol 179:187–193[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070144-0
Loading
/content/journal/micro/10.1099/mic.0.070144-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error