1887

Abstract

The osmoprotectant glycine betaine can be generated intracellularly from conversion of the exogenous precursor choline by enzymes encoded by the operon in . Uptake of choline from outside cells is mediated through two evolutionarily closely related ATP-binding cassette transporters, OpuB and OpuC. Expression of the operon and of the operon is known to be osmoinducible. Here, we show that choline exerts a suppressive effect on expression during normal growth and under osmotic stress. In the absence of the choline-responsive repressor GbsR, expression is also suppressed by choline. We also report that a gene (formerly , now designated ) located immediately upstream of the operon negatively regulates transcription of the operon and, in the absence of GbsR, also that of the operon. An inverted repeat (TTGTAAA-N-TTTACAA) that overlaps with the −35 hexamer of the promoters of both operons has been identified as the OpcR operator. OpcR belongs to the GbsR-type transcriptional regulators. Its orthologues with unknown function are present in some other species. Moreover, deletion analyses revealed that a region located further upstream of the promoters of the operon and the operon is critical for expression of both operons during normal growth and under osmotic stress. Osmotic induction of these two operons appears not to be OpcR mediated. OpcR is not a choline-responsive repressor. The possible biological role of OpcR is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067074-0
2013-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2087.html?itemId=/content/journal/micro/10.1099/mic.0.067074-0&mimeType=html&fmt=ahah

References

  1. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol70:6887–6891 [CrossRef][PubMed]
    [Google Scholar]
  2. Boch J., Kempf B., Bremer E.. ( 1994;). Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol176:5364–5371[PubMed]
    [Google Scholar]
  3. Boch J., Kempf B., Schmid R., Bremer E.. ( 1996;). Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol178:5121–5129[PubMed]
    [Google Scholar]
  4. Boch J., Nau-Wagner G., Kneip S., Bremer E.. ( 1997;). Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol168:282–289 [CrossRef][PubMed]
    [Google Scholar]
  5. Bremer E.. ( 2002;). Adaptation to changing osmolarity. Bacillus subtilis and its Closest Relatives: from Genes to Cells385–391 Sonenshein A. L., Hoch J. A., Losick R. M.. Washington, DC: American Society for Microbiology;[CrossRef]
    [Google Scholar]
  6. Chang S., Cohen S. N.. ( 1979;). High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet168:111–115[CrossRef]
    [Google Scholar]
  7. Contente S., Dubnau D.. ( 1979;). Characterization of plasmid transformation in Bacillus subtilis: kinetic properties and the effect of DNA conformation. Mol Gen Genet167:251–258 [CrossRef][PubMed]
    [Google Scholar]
  8. Dodd I. B., Egan J. B.. ( 1990;). Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res18:5019–5026 [CrossRef][PubMed]
    [Google Scholar]
  9. Domínguez-Ferreras A., Soto M. J., Pérez-Arnedo R., Olivares J., Sanjuán J.. ( 2009;). Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol191:7490–7499 [CrossRef][PubMed]
    [Google Scholar]
  10. Fedhila S., Msadek T., Nel P., Lereclus D.. ( 2002;). Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. . J Bacteriol184:5554–5562 [CrossRef][PubMed]
    [Google Scholar]
  11. Fischer K. E., Bremer E.. ( 2012;). Activity of the osmotically regulated yqiHIK promoter from Bacillus subtilis is controlled at a distance. J Bacteriol194:5197–5208 [CrossRef][PubMed]
    [Google Scholar]
  12. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P.. ( 1995;). Antibiotic-resistance cassettes for Bacillus subtilis. . Gene167:335–336 [CrossRef][PubMed]
    [Google Scholar]
  13. Hahne H., Mäder U., Otto A., Bonn F., Steil L., Bremer E., Hecker M., Becher D.. ( 2010;). A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol192:870–882 [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffmann T., Wensing A., Brosius M., Steil L., Völker U., Bremer E.. ( 2013;). Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol195:510–522 [CrossRef][PubMed]
    [Google Scholar]
  15. Huang S. C., Lin T. H., Shaw G. C.. ( 2011;). PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis. . Microbiology157:3370–3377 [CrossRef][PubMed]
    [Google Scholar]
  16. Jebbar M., von Blohn C., Bremer E.. ( 1997;). Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol Lett154:325–330 [CrossRef]
    [Google Scholar]
  17. Kappes R. M., Bremer E.. ( 1998;). Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. Microbiology144:83–90 [CrossRef]
    [Google Scholar]
  18. Kappes R. M., Kempf B., Bremer E.. ( 1996;). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol178:5071–5079[PubMed]
    [Google Scholar]
  19. Kappes R. M., Kempf B., Kneip S., Boch J., Gade J., Meier-Wagner J., Bremer E.. ( 1999;). Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. . Mol Microbiol32:203–216 [CrossRef][PubMed]
    [Google Scholar]
  20. Kempf B., Bremer E.. ( 1995;). OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. . J Biol Chem270:16701–16713 [CrossRef][PubMed]
    [Google Scholar]
  21. Kempf B., Bremer E.. ( 1998;). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol170:319–330 [CrossRef][PubMed]
    [Google Scholar]
  22. Lin T. H., Wei G. T., Su C. C., Shaw G. C.. ( 2012;). AdeR, a PucR-type transcription factor, activates expression of l-alanine dehydrogenase and is required for sporulation of Bacillus subtilis. . J Bacteriol194:4995–5001 [CrossRef][PubMed]
    [Google Scholar]
  23. Nau-Wagner G., Boch J., Le Good J. A., Bremer E.. ( 1999;). High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. . Appl Environ Microbiol65:560–568[PubMed]
    [Google Scholar]
  24. Nau-Wagner G., Opper D., Rolbetzki A., Boch J., Kempf B., Hoffmann T., Bremer E.. ( 2012;). Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J Bacteriol194:2703–2714 [CrossRef][PubMed]
    [Google Scholar]
  25. O’Kane C., Stephens M. A., McConnell D.. ( 1986;). Integrable alpha-amylase plasmid for generating random transcriptional fusions in Bacillus subtilis. . J Bacteriol168:973–981[PubMed]
    [Google Scholar]
  26. Peluso G., Barbarisi A., Savica V., Reda E., Nicolai R., Benatti P., Calvani M.. ( 2001;). Carnitine: an osmolyte that plays a metabolic role. J Cell Biochem80:1–10 [CrossRef][PubMed]
    [Google Scholar]
  27. Robert H., Le Marrec C., Blanco C., Jebbar M.. ( 2000;). Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. . Appl Environ Microbiol66:509–517 [CrossRef][PubMed]
    [Google Scholar]
  28. Schrögel O., Allmansberger R.. ( 1997;). Optimisation of the BgaB reporter system: determination of transcriptional regulation of stress responsive genes in Bacillus subtilis. . FEMS Microbiol Lett153:237–243 [CrossRef][PubMed]
    [Google Scholar]
  29. Steil L., Hoffmann T., Budde I., Völker U., Bremer E.. ( 2003;). Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol185:6358–6370 [CrossRef][PubMed]
    [Google Scholar]
  30. Tseng C. L., Shaw G. C.. ( 2008;). Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis. . J Bacteriol190:1561–1567 [CrossRef][PubMed]
    [Google Scholar]
  31. Wood J. M., Bremer E., Csonka L. N., Kraemer R., Poolman B., van der Heide T., Smith L. T.. ( 2001;). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol130:437–460 [CrossRef][PubMed]
    [Google Scholar]
  32. Yuan G., Wong S. L.. ( 1995;). Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol177:5427–5433[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067074-0
Loading
/content/journal/micro/10.1099/mic.0.067074-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error