1887

Abstract

possesses a pronounced extracellular Cu-reduction activity which leads to the accumulation of Cu in the medium. The kinetics of this reaction were not saturable by increasing copper concentrations, suggesting a non-enzymic reaction. A copper-reductase-deficient mutant, isolated by random transposon mutagenesis, had an insertion in the gene, which encodes -succinylbenzoic acid CoA ligase. This is a key enzyme in menaquinone biosynthesis. The Δ mutant was deficient in short-chain menaquinones, and exogenously added menaquinone complemented the copper-reductase-deficient phenotype. Haem-induced respiration of wild-type efficiently suppressed copper reduction, presumably by competition by the -type quinol oxidase for menaquinone. As expected, the Δ mutant was respiration-deficient, but could be made respiration-proficient by supplementation with menaquinone. Growth of wild-type cells was more copper-sensitive than that of the Δ mutant, due to the production of Cu ions by the wild-type. This growth inhibition of the wild-type was strongly attenuated if Cu was scavenged with the Cu(I) chelator bicinchoninic acid. These findings support a model whereby copper is non-enzymically reduced at the membrane by menaquinones. Respiration effectively competes for reduced quinones, which suppresses copper reduction. These findings highlight novel links between copper reduction, respiration and Cu toxicity in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066928-0
2013-06-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1190.html?itemId=/content/journal/micro/10.1099/mic.0.066928-0&mimeType=html&fmt=ahah

References

  1. Argüello J. M., Eren E., González-Guerrero M..( 2007;). The structure and function of heavy metal transport P1B-ATPases. Biometals20:233–248 [CrossRef][PubMed]
    [Google Scholar]
  2. Ausubel R. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K..( 1995;). Current Protocols in Molecular Biology New York: John Wiley & Sons, Inc;
    [Google Scholar]
  3. Beswick P. H., Hall G. H., Hook A. J., Little K., McBrien D. C., Lott K. A..( 1976;). Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact14:347–356 [CrossRef][PubMed]
    [Google Scholar]
  4. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A..( 2001;). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res11:731–753 [CrossRef][PubMed]
    [Google Scholar]
  5. Bongers R. S., Hoefnagel M. H., Kleerebezem M..( 2005;). High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl Environ Microbiol71:1109–1113 [CrossRef][PubMed]
    [Google Scholar]
  6. Brandt U., Trumpower B..( 1994;). The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol29:165–197 [CrossRef][PubMed]
    [Google Scholar]
  7. Brenner A. J., Harris E. D..( 1995;). A quantitative test for copper using bicinchoninic acid. Anal Biochem226:80–84 [CrossRef][PubMed]
    [Google Scholar]
  8. Chillappagari S., Miethke M., Trip H., Kuipers O. P., Marahiel M. A..( 2009;). Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol191:2362–2370 [CrossRef][PubMed]
    [Google Scholar]
  9. Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K., Gaudu P., Le Loir Y., Violet F., Loubière P., Gruss A..( 2001;). Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol183:4509–4516 [CrossRef][PubMed]
    [Google Scholar]
  10. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaïki L., Lamberet G., Sourice S., Duwat P., Gruss A..( 2002;). Respiration capacity and consequences in Lactococcus lactis. Antonie van Leeuwenhoek82:263–269 [CrossRef][PubMed]
    [Google Scholar]
  11. Gerber S. D., Solioz M..( 2007;). Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. J Basic Microbiol47:281–286 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaneko T., Takahashi M., Suzuki H..( 1990;). Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol56:2644–2649[PubMed]
    [Google Scholar]
  13. Karlin K. D..( 1993;). Metalloenzymes, structural motifs, and inorganic models. Science261:701–708 [CrossRef][PubMed]
    [Google Scholar]
  14. Karlyshev A. V., Pallen M. J., Wren B. W..( 2000;). Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques28:1078–10801082[PubMed]
    [Google Scholar]
  15. Lovley D. R..( 2002;). Dissimilatory metal reduction: from early life to bioremediation. ASM News68:231–237
    [Google Scholar]
  16. Macomber L., Imlay J. A..( 2009;). The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A106:8344–8349 [CrossRef][PubMed]
    [Google Scholar]
  17. Magnani D., Solioz M..( 2007;). How bacteria handle copper. Molecular Microbiology of Heavy Metals259–285 Nies D. H., Silver S.. Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  18. Maguin E., Prévost H., Ehrlich S. D., Gruss A..( 1996;). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol178:931–935[PubMed]
    [Google Scholar]
  19. Myers C. R., Myers J. M..( 2004;). Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol70:5415–5425 [CrossRef][PubMed]
    [Google Scholar]
  20. Navarrete J. U., Borrok D. M., Viveros M., Ellzey J. T..( 2011;). Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta75:784–799 [CrossRef][PubMed]
    [Google Scholar]
  21. Neves A. R., Ramos A., Costa H., van Swam I. I., Hugenholtz J., Kleerebezem M., de Vos W., Santos H..( 2002;). Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol68:6332–6342 [CrossRef][PubMed]
    [Google Scholar]
  22. Rapisarda V. A., Montelongo L. R., Farías R. N., Massa E. M..( 1999;). Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch Biochem Biophys370:143–150 [CrossRef][PubMed]
    [Google Scholar]
  23. Rapisarda V. A., Chehín R. N., De Las Rivas J., Rodríguez-Montelongo L., Farías R. N., Massa E. M..( 2002;). Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Arch Biochem Biophys405:87–94 [CrossRef][PubMed]
    [Google Scholar]
  24. Rezaïki L., Lamberet G., Derré A., Gruss A., Gaudu P..( 2008;). Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol Microbiol67:947–957 [CrossRef][PubMed]
    [Google Scholar]
  25. Sijpesteijn A. K..( 1970;). Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie van Leeuwenhoek36:335–348 [CrossRef][PubMed]
    [Google Scholar]
  26. Solioz M., Stoyanov J. V..( 2003;). Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev27:183–195 [CrossRef][PubMed]
    [Google Scholar]
  27. Solioz M., Abicht H. K., Mermod M., Mancini S..( 2010;). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem15:3–14 [CrossRef][PubMed]
    [Google Scholar]
  28. Solioz M., Mancini S., Abicht H. K., Mermod M..( 2011;). The lactic acid bacteria response to metal stress. Stress Response of Lactic Acid Bacteria163–195 Tsakalidou E., Papadimitriou K.. Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  29. Strausak D., Solioz M..( 1997;). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem272:8932–8936 [CrossRef][PubMed]
    [Google Scholar]
  30. Tachon S., Brandsma J. B., Yvon M..( 2010;). NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. Appl Environ Microbiol76:1311–1319 [CrossRef][PubMed]
    [Google Scholar]
  31. Terzaghi B. E., Sandine W. E..( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  32. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R..( 1998;). Microbiological evidence for Fe(III) reduction on early Earth. Nature395:65–67 [CrossRef][PubMed]
    [Google Scholar]
  33. Volentini S. I., Farías R. N., Rodríguez-Montelongo L., Rapisarda V. A..( 2011;). Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. Biometals24:827–835 [CrossRef][PubMed]
    [Google Scholar]
  34. Wunderli-Ye H., Solioz M..( 1999;). Copper homeostasis in Enterococcus hirae. Adv Exp Med Biol448:255–264 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066928-0
Loading
/content/journal/micro/10.1099/mic.0.066928-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error