1887

Abstract

possesses a pronounced extracellular Cu-reduction activity which leads to the accumulation of Cu in the medium. The kinetics of this reaction were not saturable by increasing copper concentrations, suggesting a non-enzymic reaction. A copper-reductase-deficient mutant, isolated by random transposon mutagenesis, had an insertion in the gene, which encodes -succinylbenzoic acid CoA ligase. This is a key enzyme in menaquinone biosynthesis. The Δ mutant was deficient in short-chain menaquinones, and exogenously added menaquinone complemented the copper-reductase-deficient phenotype. Haem-induced respiration of wild-type efficiently suppressed copper reduction, presumably by competition by the -type quinol oxidase for menaquinone. As expected, the Δ mutant was respiration-deficient, but could be made respiration-proficient by supplementation with menaquinone. Growth of wild-type cells was more copper-sensitive than that of the Δ mutant, due to the production of Cu ions by the wild-type. This growth inhibition of the wild-type was strongly attenuated if Cu was scavenged with the Cu(I) chelator bicinchoninic acid. These findings support a model whereby copper is non-enzymically reduced at the membrane by menaquinones. Respiration effectively competes for reduced quinones, which suppresses copper reduction. These findings highlight novel links between copper reduction, respiration and Cu toxicity in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066928-0
2013-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1190.html?itemId=/content/journal/micro/10.1099/mic.0.066928-0&mimeType=html&fmt=ahah

References

  1. Argüello J. M., Eren E., González-Guerrero M.. ( 2007;). The structure and function of heavy metal transport P1B-ATPases. . Biometals 20:, 233–248. [CrossRef][PubMed]
    [Google Scholar]
  2. Ausubel R. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K.. ( 1995;). Current Protocols in Molecular Biology. New York:: John Wiley & Sons, Inc;.
    [Google Scholar]
  3. Beswick P. H., Hall G. H., Hook A. J., Little K., McBrien D. C., Lott K. A.. ( 1976;). Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. . Chem Biol Interact 14:, 347–356. [CrossRef][PubMed]
    [Google Scholar]
  4. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A.. ( 2001;). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. . Genome Res 11:, 731–753. [CrossRef][PubMed]
    [Google Scholar]
  5. Bongers R. S., Hoefnagel M. H., Kleerebezem M.. ( 2005;). High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. . Appl Environ Microbiol 71:, 1109–1113. [CrossRef][PubMed]
    [Google Scholar]
  6. Brandt U., Trumpower B.. ( 1994;). The protonmotive Q cycle in mitochondria and bacteria. . Crit Rev Biochem Mol Biol 29:, 165–197. [CrossRef][PubMed]
    [Google Scholar]
  7. Brenner A. J., Harris E. D.. ( 1995;). A quantitative test for copper using bicinchoninic acid. . Anal Biochem 226:, 80–84. [CrossRef][PubMed]
    [Google Scholar]
  8. Chillappagari S., Miethke M., Trip H., Kuipers O. P., Marahiel M. A.. ( 2009;). Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. . J Bacteriol 191:, 2362–2370. [CrossRef][PubMed]
    [Google Scholar]
  9. Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K., Gaudu P., Le Loir Y., Violet F., Loubière P., Gruss A.. ( 2001;). Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. . J Bacteriol 183:, 4509–4516. [CrossRef][PubMed]
    [Google Scholar]
  10. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaïki L., Lamberet G., Sourice S., Duwat P., Gruss A.. ( 2002;). Respiration capacity and consequences in Lactococcus lactis. . Antonie van Leeuwenhoek 82:, 263–269. [CrossRef][PubMed]
    [Google Scholar]
  11. Gerber S. D., Solioz M.. ( 2007;). Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. . J Basic Microbiol 47:, 281–286. [CrossRef][PubMed]
    [Google Scholar]
  12. Kaneko T., Takahashi M., Suzuki H.. ( 1990;). Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. . Appl Environ Microbiol 56:, 2644–2649.[PubMed]
    [Google Scholar]
  13. Karlin K. D.. ( 1993;). Metalloenzymes, structural motifs, and inorganic models. . Science 261:, 701–708. [CrossRef][PubMed]
    [Google Scholar]
  14. Karlyshev A. V., Pallen M. J., Wren B. W.. ( 2000;). Single-primer PCR procedure for rapid identification of transposon insertion sites. . Biotechniques 28:, 1078–, 1080, 1082.[PubMed]
    [Google Scholar]
  15. Lovley D. R.. ( 2002;). Dissimilatory metal reduction: from early life to bioremediation. . ASM News 68:, 231–237.
    [Google Scholar]
  16. Macomber L., Imlay J. A.. ( 2009;). The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. . Proc Natl Acad Sci U S A 106:, 8344–8349. [CrossRef][PubMed]
    [Google Scholar]
  17. Magnani D., Solioz M.. ( 2007;). How bacteria handle copper. . In Molecular Microbiology of Heavy Metals, pp. 259–285. Edited by Nies D. H., Silver S... Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  18. Maguin E., Prévost H., Ehrlich S. D., Gruss A.. ( 1996;). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. . J Bacteriol 178:, 931–935.[PubMed]
    [Google Scholar]
  19. Myers C. R., Myers J. M.. ( 2004;). Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. . Appl Environ Microbiol 70:, 5415–5425. [CrossRef][PubMed]
    [Google Scholar]
  20. Navarrete J. U., Borrok D. M., Viveros M., Ellzey J. T.. ( 2011;). Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. . Geochim Cosmochim Acta 75:, 784–799. [CrossRef][PubMed]
    [Google Scholar]
  21. Neves A. R., Ramos A., Costa H., van Swam I. I., Hugenholtz J., Kleerebezem M., de Vos W., Santos H.. ( 2002;). Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. . Appl Environ Microbiol 68:, 6332–6342. [CrossRef][PubMed]
    [Google Scholar]
  22. Rapisarda V. A., Montelongo L. R., Farías R. N., Massa E. M.. ( 1999;). Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. . Arch Biochem Biophys 370:, 143–150. [CrossRef][PubMed]
    [Google Scholar]
  23. Rapisarda V. A., Chehín R. N., De Las Rivas J., Rodríguez-Montelongo L., Farías R. N., Massa E. M.. ( 2002;). Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. . Arch Biochem Biophys 405:, 87–94. [CrossRef][PubMed]
    [Google Scholar]
  24. Rezaïki L., Lamberet G., Derré A., Gruss A., Gaudu P.. ( 2008;). Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. . Mol Microbiol 67:, 947–957. [CrossRef][PubMed]
    [Google Scholar]
  25. Sijpesteijn A. K.. ( 1970;). Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. . Antonie van Leeuwenhoek 36:, 335–348. [CrossRef][PubMed]
    [Google Scholar]
  26. Solioz M., Stoyanov J. V.. ( 2003;). Copper homeostasis in Enterococcus hirae. . FEMS Microbiol Rev 27:, 183–195. [CrossRef][PubMed]
    [Google Scholar]
  27. Solioz M., Abicht H. K., Mermod M., Mancini S.. ( 2010;). Response of Gram-positive bacteria to copper stress. . J Biol Inorg Chem 15:, 3–14. [CrossRef][PubMed]
    [Google Scholar]
  28. Solioz M., Mancini S., Abicht H. K., Mermod M.. ( 2011;). The lactic acid bacteria response to metal stress. . In Stress Response of Lactic Acid Bacteria, pp. 163–195. Edited by Tsakalidou E., Papadimitriou K... Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
  29. Strausak D., Solioz M.. ( 1997;). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. . J Biol Chem 272:, 8932–8936. [CrossRef][PubMed]
    [Google Scholar]
  30. Tachon S., Brandsma J. B., Yvon M.. ( 2010;). NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. . Appl Environ Microbiol 76:, 1311–1319. [CrossRef][PubMed]
    [Google Scholar]
  31. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. . Appl Microbiol 29:, 807–813.[PubMed]
    [Google Scholar]
  32. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R.. ( 1998;). Microbiological evidence for Fe(III) reduction on early Earth. . Nature 395:, 65–67. [CrossRef][PubMed]
    [Google Scholar]
  33. Volentini S. I., Farías R. N., Rodríguez-Montelongo L., Rapisarda V. A.. ( 2011;). Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. . Biometals 24:, 827–835. [CrossRef][PubMed]
    [Google Scholar]
  34. Wunderli-Ye H., Solioz M.. ( 1999;). Copper homeostasis in Enterococcus hirae. . Adv Exp Med Biol 448:, 255–264. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066928-0
Loading
/content/journal/micro/10.1099/mic.0.066928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error