1887

Abstract

The disparity in diversity between unencapsulated (non-typable; NT) and encapsulated, serotypable (Hi) has been recognized for some time. It has previously been suggested that the wider diversity evidenced within NTHi compared with typable lineages may be due to different rates of recombination within the encapsulated and NT populations. To examine whether there is evidence for different levels of recombination within typable and NT lineages of Hi, we performed a statistical genetic analysis of 819 distinct genotypes of Hi to explore the congruence of serotype with population genetic clustering, and to identify patterns of recombination within the Hi population. We find that a significantly larger proportion of NT isolates show evidence of recombination, compared with typable isolates, and also that when admixture is present, the total amount of recombination per strain is greater within NT isolates, compared with the typable population. Furthermore, we demonstrate significant heterogeneity in the number of admixed individuals between NT lineages themselves, while such variation was not observed in typable lineages. This variability suggests that factors other than the presence of capsule are important determinants of recombination rate in the Hi population.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063073-0
2012-12-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/2958.html?itemId=/content/journal/micro/10.1099/mic.0.063073-0&mimeType=html&fmt=ahah

References

  1. Alexander H. E., Leidy G.. ( 1951;). Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med93:345–359 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson P.. ( 1983;). Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197. Infect Immun39:233–238[PubMed]
    [Google Scholar]
  3. Bart A., Barnabé C., Achtman M., Dankert J., van der Ende A., Tibayrenc M.. ( 2001;). The population structure of Neisseria meningitidis serogroup A fits the predictions for clonality. Infect Genet Evol1:117–122 [CrossRef][PubMed]
    [Google Scholar]
  4. Bisgard K. M., Kao A., Leake J., Strebel P. M., Perkins B. A., Wharton M.. ( 1998;). Haemophilus influenzae invasive disease in the United States, 1994–1995: near disappearance of a vaccine-preventable childhood disease. Emerg Infect Dis4:229–237 [CrossRef][PubMed]
    [Google Scholar]
  5. Booy R., Heath P. T., Slack M. P. E., Begg N., Moxon E. R.. ( 1997;). Vaccine failures after primary immunisation with Haemophilus influenzae type-b conjugate vaccine without booster. Lancet349:1197–1202 [CrossRef][PubMed]
    [Google Scholar]
  6. Chakravarti I. M., Laha R. G., Roy J.. ( 1967;). Handbook of Methods of Applied Statistics New York, London: Wiley;
    [Google Scholar]
  7. Chu C., Schneerson R., Robbins J. B., Rastogi S. C.. ( 1983;). Further studies on the immunogenicity of Haemophilus influenzae type b and pneumococcal type 6A polysaccharide-protein conjugates. Infect Immun40:245–256[PubMed]
    [Google Scholar]
  8. Corander J., Marttinen P.. ( 2006;). Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol15:2833–2843 [CrossRef][PubMed]
    [Google Scholar]
  9. Corander J., Tang J.. ( 2007;). Bayesian analysis of population structure based on linked molecular information. Math Biosci205:19–31 [CrossRef][PubMed]
    [Google Scholar]
  10. Corander J., Marttinen P., Sirén J., Tang J.. ( 2008;). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics9:539 [CrossRef][PubMed]
    [Google Scholar]
  11. Croucher N. J., Harris S. R., Fraser C., Quail M. A., Burton J., van der Linden M., McGee L., von Gottberg A., Song J. H.. & other authors ( 2011;). Rapid pneumococcal evolution in response to clinical interventions. Science331:430–434 [CrossRef][PubMed]
    [Google Scholar]
  12. Danner D. B., Deich R. A., Sisco K. L., Smith H. O.. ( 1980;). An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene11:311–318 [CrossRef][PubMed]
    [Google Scholar]
  13. Erwin A. L., Sandstedt S. A., Bonthuis P. J., Geelhood J. L., Nelson K. L., Unrath W. C., Diggle M. A., Theodore M. J., Pleatman C. R.. & other authors ( 2008;). Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol190:1473–1483 [CrossRef][PubMed]
    [Google Scholar]
  14. Falla T. J., Crook D. W. M., Kraak W. A. G., Nichols W. W., Anderson E. C., Jordens J. Z., Slack M. P. E., Dobson S. R. M., Moxon E. R., Mayon-White D.. ( 1993;). Population-based study of non-typable Haemophilus influenzae invasive disease in children and neonates. Lancet341:851–854 [CrossRef][PubMed]
    [Google Scholar]
  15. Feil E. J., Holmes E. C., Bessen D. E., Chan M. S., Day N. P., Enright M. C., Goldstein R., Hood D. W., Kalia A.. & other authors ( 2001;). Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci U S A98:182–187 [CrossRef][PubMed]
    [Google Scholar]
  16. Goodgal S. H., Herriott R. M.. ( 1961;). Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol44:1201–1227 [CrossRef][PubMed]
    [Google Scholar]
  17. Gwinn M. L., Ramanathan R., Smith H. O., Tomb J. F.. ( 1998;). A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J Bacteriol180:746–748[PubMed]
    [Google Scholar]
  18. Hanage W. P., Fraser C., Tang J., Connor T. R., Corander J.. ( 2009;). Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. Science324:1454–1457 [CrossRef][PubMed]
    [Google Scholar]
  19. Karudapuram S., Barcak G. J.. ( 1997;). The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol179:4815–4820[PubMed]
    [Google Scholar]
  20. Karudapuram S., Zhao X., Barcak G. J.. ( 1995;). DNA sequence and characterization of Haemophilus influenzae dprA +, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol177:3235–3240[PubMed]
    [Google Scholar]
  21. Klein J. O.. ( 1997;). Role of nontypeable Haemophilus influenzae in pediatric respiratory tract infections. Pediatr Infect Dis J16:Suppl. 2S5–S8 [CrossRef][PubMed]
    [Google Scholar]
  22. Larson T. G., Goodgal S. H.. ( 1991;). Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae . J Bacteriol173:4683–4691[PubMed]
    [Google Scholar]
  23. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K.. & other authors ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145 [CrossRef][PubMed]
    [Google Scholar]
  24. Maughan H., Redfield R. J.. ( 2009;). Extensive variation in natural competence in Haemophilus influenzae . Evolution63:1852–1866 [CrossRef][PubMed]
    [Google Scholar]
  25. McCarthy D.. ( 1989;). Cloning of the rec-2 locus of Haemophilus influenzae . Gene75:135–143 [CrossRef][PubMed]
    [Google Scholar]
  26. Meats E., Feil E. J., Stringer S., Cody A. J., Goldstein R., Kroll J. S., Popovic T., Spratt B. G.. ( 2003;). Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol41:1623–1636 [CrossRef][PubMed]
    [Google Scholar]
  27. Musser J. M., Barenkamp S. J., Granoff D. M., Selander R. K.. ( 1986;). Genetic relationships of serologically nontypable and serotype b strains of Haemophilus influenzae . Infect Immun52:183–191[PubMed]
    [Google Scholar]
  28. Musser J. M., Kroll J. S., Moxon E. R., Selander R. K.. ( 1988a;). Evolutionary genetics of the encapsulated strains of Haemophilus influenzae . Proc Natl Acad Sci U S A85:7758–7762 [CrossRef][PubMed]
    [Google Scholar]
  29. Musser J. M., Kroll J. S., Moxon E. R., Selander R. K.. ( 1988b;). Clonal population structure of encapsulated Haemophilus influenzae . Infect Immun56:1837–1845[PubMed]
    [Google Scholar]
  30. Musser J. M., Kroll J. S., Granoff D. M., Moxon E. R., Brodeur B. R., Campos J., Dabernat H., Frederiksen W., Hamel J.. & other authors ( 1990;). Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae . Rev Infect Dis12:75–111 [CrossRef][PubMed]
    [Google Scholar]
  31. Peltola H.. ( 2000;). Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin Microbiol Rev13:302–317 [CrossRef][PubMed]
    [Google Scholar]
  32. Pittman M.. ( 1930;).Haemophilus influenzae. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and MedicineNew York27
  33. Quentin R., Goudeau A., Wallace R. J. Jr, Smith A. L., Selander R. K., Musser J. M.. ( 1990;). Urogenital, maternal and neonatal isolates of Haemophilus influenzae: identification of unusually virulent serologically non-typable clone families and evidence for a new Haemophilus species. J Gen Microbiol136:1203–1209 [CrossRef][PubMed]
    [Google Scholar]
  34. Schierup M. H., Hein J.. ( 2000;). Consequences of recombination on traditional phylogenetic analysis. Genetics156:879–891[PubMed]
    [Google Scholar]
  35. Smith H. O., Danner D. B., Deich R. A.. ( 1981;). Genetic transformation. Annu Rev Biochem50:41–68 [CrossRef][PubMed]
    [Google Scholar]
  36. St Geme J. W. III. ( 1993;). Nontypeable Haemophilus influenzae disease: epidemiology, pathogenesis, and prospects for prevention. Infect Agents Dis2:1–16[PubMed]
    [Google Scholar]
  37. Talbird S. E., Taylor T. N., Caporale J., Ismaila A. S., Gomez J.. ( 2010;). Residual economic burden of Streptococcus pneumoniae- and nontypeable Haemophilus influenzae-associated disease following vaccination with PCV-7: a multicountry analysis. Vaccine28:Suppl. 6G14–G22 [CrossRef][PubMed]
    [Google Scholar]
  38. Tomb J. F., el-Hajj H., Smith H. O.. ( 1991;). Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene104:1–10 [CrossRef][PubMed]
    [Google Scholar]
  39. Tsang R. S., Sill M. L., Skinner S. J., Law D. K., Zhou J., Wylie J.. ( 2007;). Characterization of invasive Haemophilus influenzae disease in Manitoba, Canada, 2000–2006: invasive disease due to non-type b strains. Clin Infect Dis44:1611–1614 [CrossRef][PubMed]
    [Google Scholar]
  40. Turk D. C.. ( 1984;). The pathogenicity of Haemophilus influenzae . J Med Microbiol18:1–16 [CrossRef][PubMed]
    [Google Scholar]
  41. Waggoner-Fountain L. A., Hendley J. O., Cody E. J., Perriello V. A., Donowitz L. G.. ( 1995;). The emergence of Haemophilus influenzae types e and f as significant pathogens. Clin Infect Dis21:1322–1324 [CrossRef][PubMed]
    [Google Scholar]
  42. WHO( 2005;).Haemophilus influenzae type B (HiB)
  43. Wilcoxon F.. ( 1946;). Individual comparisons of grouped data by ranking methods. J Econ Entomol39:269[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063073-0
Loading
/content/journal/micro/10.1099/mic.0.063073-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error