1887

Abstract

The microbiota of the intestinal tract plays an important role in colonic health, mediating many effects of dietary components on colonic health and during enteric infections. In the context of the increasing incidence of antibiotic resistance in gut bacteria, complementary therapies are required for the prevention and treatment of enteric infections. Here we report the potential application of essential oils (EO) and pure EO compounds to improve human gut health. Nerolidol, thymol, eugenol and geraniol inhibited growth of the pathogens O157 : H7(VT), DSM1296, DSM11780, 3530 and S1400 at a half-maximal inhibitory concentration (IC) varying from 50 to 500 p.p.m. Most EO showed greater toxicity to pathogens than to commensals. However, the beneficial commensal was sensitive to EO at similar or even lower concentrations than the pathogens. The EO showed dose-dependent effects on cell integrity, as measured using propidium iodide, of Gram-positive bacteria. These effects were not strongly correlated with growth inhibition, however, suggesting that cell membrane damage occurred but was not the primary cause of growth inhibition. Growth inhibition of Gram-negative bacteria, in contrast, occurred mostly without cell integrity loss. Principal component analysis showed clustering of responses according to bacterial species rather than to the identity of the EO, with the exception that responses to thymol and nerolidol clustered away from the other EO. In conclusion, the selective effects of some EO might have beneficial effects on gut health if chosen carefully for effectiveness against different species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.061127-0
2012-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/11/2870.html?itemId=/content/journal/micro/10.1099/mic.0.061127-0&mimeType=html&fmt=ahah

References

  1. Amor K. B. , Breeuwer P. , Verbaarschot P. , Rombouts F. M. , Akkermans A. D. L. , De Vos W. M. , Abee T. . ( 2002; ). Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. . Appl Environ Microbiol 68:, 5209–5216. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anderson R. C. , Krueger N. A. , Byrd J. A. , Harvey R. B. , Callaway T. R. , Edrington T. S. , Nisbet D. J. . ( 2009; ). Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro . . J Appl Microbiol 107:, 1258–1268. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bakkali F. , Averbeck S. , Averbeck D. , Idaomar M. . ( 2008; ). Biological effects of essential oils – a review. . Food Chem Toxicol 46:, 446–475. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barcenilla A. , Pryde S. E. , Martin J. C. , Duncan S. H. , Stewart C. S. , Henderson C. , Flint H. J. . ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. . Appl Environ Microbiol 66:, 1654–1661. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bergonzelli G. E. , Donnicola D. , Porta N. , Corthésy-Theulaz I. E. . ( 2003; ). Essential oils as components of a diet-based approach to management of Helicobacter infection. . Antimicrob Agents Chemother 47:, 3240–3246. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burt S. . ( 2004; ). Essential oils: their antibacterial properties and potential applications in foods—a review. . Int J Food Microbiol 94:, 223–253. [CrossRef] [PubMed]
    [Google Scholar]
  7. Burt S. A. , Reinders R. D. . ( 2003; ). Antibacterial activity of selected plant essential oils against Escherichia coli O157 : H7. . Lett Appl Microbiol 36:, 162–167. [CrossRef] [PubMed]
    [Google Scholar]
  8. Delaquis P. J. , Stanich K. , Girard B. , Mazza G. . ( 2002; ). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. . Int J Food Microbiol 74:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  9. Di Pasqua R. , Betts G. , Hoskins N. , Edwards M. , Ercolini D. , Mauriello G. . ( 2007; ). Membrane toxicity of antimicrobial compounds from essential oils. . J Agric Food Chem 55:, 4863–4870. [CrossRef] [PubMed]
    [Google Scholar]
  10. Flint H. J. , Wallace R. J. . ( 2010; ). Obesity and colorectal cancer risk: impact of the gut microbiota and weight-loss diets. . Open Obes J 2:, 50–62. [CrossRef]
    [Google Scholar]
  11. Flint H. J. , Duncan S. H. , Scott K. P. , Louis P. . ( 2007; ). Interactions and competition within the microbial community of the human colon: links between diet and health. . Environ Microbiol 9:, 1101–1111. [CrossRef] [PubMed]
    [Google Scholar]
  12. Franz C. , Baser K. H. C. , Windisch W. . ( 2010; ). Essential oils and aromatic plants in animal feeding – a European perspective. A review. . Flavour Fragrance J 25:, 327–340. [CrossRef]
    [Google Scholar]
  13. Gill A. O. , Holley R. A. . ( 2006a; ). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. . Int J Food Microbiol 108:, 1–9. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gill A. O. , Holley R. A. . ( 2006b; ). Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. . Int J Food Microbiol 111:, 170–174. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hobson P. N. . ( 1969; ). Rumen bacteria. . In Methods in Microbiology, vol. 3B, pp. 133–149. Edited by Norris J. R. , Ribbons D. W. . . London and New York:: Academic Press;.
    [Google Scholar]
  16. Jolliffe I. T. . ( 2002; ). Principal Component Analysis (Springer Series in Statistics), , 2nd edn.. New York:: Springer;.
    [Google Scholar]
  17. Joossens M. , Huys G. , Cnockaert M. , De Preter V. , Verbeke K. , Rutgeerts P. , Vandamme P. , Vermeire S. . ( 2011; ). Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. . Gut 60:, 631–637. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kaefer C. M. , Milner J. A. . ( 2008; ). The role of herbs and spices in cancer prevention. . J Nutr Biochem 19:, 347–361. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mabrouk S. , Elaissi A. , Ben Jannet H. , Harzallah-Skhiri F. . ( 2011; ). Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. from Tunisia. . Nat Prod Res 25:, 77–84. [CrossRef] [PubMed]
    [Google Scholar]
  20. Maia M. R. G. , Chaudhary L. C. , Figueres L. , Wallace R. J. . ( 2007; ). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. . Antonie van Leeuwenhoek 91:, 303–314. [CrossRef] [PubMed]
    [Google Scholar]
  21. Marteau P. , Pochart P. , Doré J. , Béra-Maillet C. , Bernalier A. , Corthier G. . ( 2001; ). Comparative study of bacterial groups within the human cecal and fecal microbiota. . Appl Environ Microbiol 67:, 4939–4942. [CrossRef] [PubMed]
    [Google Scholar]
  22. McIntosh F. M. , Williams P. , Losa R. , Wallace R. J. , Beever D. A. , Newbold C. J. . ( 2003; ). Effects of essential oils on ruminal microorganisms and their protein metabolism. . Appl Environ Microbiol 69:, 5011–5014. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mitsch P. , Zitterl-Eglseer K. , Köhler B. , Gabler C. , Losa R. , Zimpernik I. . ( 2004; ). The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. . Poult Sci 83:, 669–675.[PubMed] [CrossRef]
    [Google Scholar]
  24. Moore W. E. C. , Moore L. H. . ( 1995; ). Intestinal floras of populations that have a high risk of colon cancer. . Appl Environ Microbiol 61:, 3202–3207.[PubMed]
    [Google Scholar]
  25. Newbold C. J. , McIntosh F. M. , Williams P. , Losa R. , Wallace R. J. . ( 2004; ). Effects of a specific blend of essential oil compounds on rumen fermentation. . Anim Feed Sci Technol 114:, 105–112. [CrossRef]
    [Google Scholar]
  26. Noor S. O. , Ridgway K. , Scovell L. , Kemsley E. K. , Lund E. K. , Jamieson C. , Johnson I. T. , Narbad A. . ( 2010; ). Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. . BMC Gastroenterol 10:, 134. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ouwehand A. C. , Tiihonen K. , Kettunen H. , Peuranen S. , Schulze H. , Rautonen N. . ( 2010; ). In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. . Vet Med 55:, 71–78.
    [Google Scholar]
  28. Sekirov I. , Finlay B. B. . ( 2009; ). The role of the intestinal microbiota in enteric infection. . J Physiol 587:, 4159–4167. [CrossRef] [PubMed]
    [Google Scholar]
  29. Sekirov I. , Russell S. L. , Antunes L. C. , Finlay B. B. . ( 2010; ). Gut microbiota in health and disease. . Physiol Rev 90:, 859–904. [CrossRef] [PubMed]
    [Google Scholar]
  30. Shelef L. A. . ( 1984; ). Antimicrobial effects of spices. . J Food Saf 6:, 29–44. [CrossRef]
    [Google Scholar]
  31. Si W. , Gong J. , Tsao R. , Zhou T. , Yu H. , Poppe C. , Johnson R. , Du Z. . ( 2006; ). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. . J Appl Microbiol 100:, 296–305. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sokol H. , Pigneur B. , Watterlot L. , Lakhdari O. , Bermúdez-Humarán L. G. , Gratadoux J. J. , Blugeon S. , Bridonneau C. , Furet J. P. . & other authors ( 2008; ). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. . Proc Natl Acad Sci U S A 105:, 16731–16736. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sultanbawa Y. , Cusack A. , Currie M. , Davis C. . ( 2009; ). An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts. . J Rapid Methods Automation Microbiol 17:, 519–534. [CrossRef]
    [Google Scholar]
  34. Ultee A. , Bennik M. H. J. , Moezelaar R. . ( 2002; ). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus . . Appl Environ Microbiol 68:, 1561–1568. [CrossRef] [PubMed]
    [Google Scholar]
  35. Veldhuizen E. J. A. , Tjeerdsma-van Bokhoven J. L. M. , Zweijtzer C. , Burt S. A. , Haagsman H. P. . ( 2006; ). Structural requirements for the antimicrobial activity of carvacrol. . J Agric Food Chem 54:, 1874–1879. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wallace R. J. . ( 2004; ). Antimicrobial properties of plant secondary metabolites. . Proc Nutr Soc 63:, 621–629. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wallace R. J. , McEwan N. R. , McIntosh F. M. , Teferedegne B. , Newbold C. J. . ( 2002; ). Natural products as manipulators of rumen fermentation. . Asian-Australas J Anim Sci 15:, 1458–1468.[CrossRef]
    [Google Scholar]
  38. Wallace R. J. , Oleszek W. , Franz C. , Hahn I. , Baser K. H. , Mathe A. , Teichmann K. . ( 2010; ). Dietary plant bioactives for poultry health and productivity. . Br Poult Sci 51:, 461–487. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.061127-0
Loading
/content/journal/micro/10.1099/mic.0.061127-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error