1887

Abstract

Purine nucleotides are either synthesized from 5-phosphoribosyl-1-pyrophosphate (PRPP) or salvaged from the environment. In , transcription of the synthesis operons, and , has genetically been shown to be activated by the PurR protein when bound to a conserved PurBox motif present on the DNA at a fixed distance from the promoter −10 element. PurR contains a PRPP-binding site, and activation occurs when the intracellular PRPP pool is high as a consequence of low exogenous purine nucleotide pools. By an iterative approach of bioinformatics searches and motif optimization, 21 PurR-regulated genes were identified and used in a redefinition of the PurBox consensus sequence. In the process a new motif, the double-PurBox, which is present in a number of promoters and contains two partly overlapping PurBox motifs, was established. Transcriptional fusions were used to analyse wild-type promoters and promoters with inactivating PurBox mutations to confirm the relevance of the PurBox motifs as PurR-binding sites. The promoters of several operons were shown to be devoid of any −35 sequence, and found to be completely dependent on PurR-mediated activation. This suggests that binding of the PurR protein to the PurBox takes over the role of the −35 sequence. The study has expanded the PurR regulon to include promoters in nucleotide metabolism, C compound metabolism, phosphonate transport, pyrophosphatase activity, (p)ppGpp metabolism, and translation-related functions. Of special interest is the presence of PurBox motifs in promoters, suggesting a novel connection between nucleotide availability and the translational machinery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059576-0
2012-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/2026.html?itemId=/content/journal/micro/10.1099/mic.0.059576-0&mimeType=html&fmt=ahah

References

  1. Andersen P. S., Martinussen J., Hammer K.. ( 1996;). Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis. J Bacteriol178:5005–5012[PubMed]
    [Google Scholar]
  2. Bera A. K., Zhu J., Zalkin H., Smith J. L.. ( 2003;). Functional dissection of the Bacillus subtilis pur operator site. J Bacteriol185:4099–4109 [CrossRef][PubMed]
    [Google Scholar]
  3. Beresford T., Condon S.. ( 1991;). Cloning and partial characterization of genes for ribosomal ribonucleic acid in Lactococcus lactis subsp. lactis . FEMS Microbiol Lett62:319–323 [CrossRef][PubMed]
    [Google Scholar]
  4. Beresford T., Condon S.. ( 1993;). Physiological and genetic regulation of rRNA synthesis in Lactococcus . J Gen Microbiol139:2009–2017[PubMed][CrossRef]
    [Google Scholar]
  5. Bertani G.. ( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol62:293–300[PubMed]
    [Google Scholar]
  6. Beyer N. H., Roepstorff P., Hammer K., Kilstrup M.. ( 2003;). Proteome analysis of the purine stimulon from Lactococcus lactis . Proteomics3:786–797 [CrossRef][PubMed]
    [Google Scholar]
  7. Bochner B. R., Ames B. N.. ( 1982;). Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem257:9759–9769[PubMed]
    [Google Scholar]
  8. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A.. ( 2001;). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res11:731–753 [CrossRef][PubMed]
    [Google Scholar]
  9. Cho B. K., Federowicz S. A., Embree M., Park Y. S., Kim D., Palsson B. O.. ( 2011;). The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res39:6456–6464 [CrossRef][PubMed]
    [Google Scholar]
  10. Costantino N., Court D. L.. ( 2003;). Enhanced levels of λRed-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A100:15748–15753 [CrossRef][PubMed]
    [Google Scholar]
  11. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. ( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  12. Gasson M. J.. ( 1983;). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol154:1–9[PubMed]
    [Google Scholar]
  13. Gasson M. J., Godon J. J., Pillidge C. J., Eaton T. J., Jury K., Shearman C. A.. ( 1995;). Characterization and exploitation of conjugation in Lactococcus lactis . Int Dairy J5:757–762 [CrossRef]
    [Google Scholar]
  14. Gitton C., Meyrand M., Wang J., Caron C., Trubuil A., Guillot A., Mistou M. Y.. ( 2005;). Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol71:7152–7163 [CrossRef][PubMed]
    [Google Scholar]
  15. Guédon E., Jamet E., Renault P.. ( 2002;). Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators. Antonie van Leeuwenhoek82:93–112 [CrossRef][PubMed]
    [Google Scholar]
  16. Haugen S. P., Berkmen M. B., Ross W., Gaal T., Ward C., Gourse R. L.. ( 2006;). rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell125:1069–1082 [CrossRef][PubMed]
    [Google Scholar]
  17. Helmann J. D.. ( 1995;). Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360 [CrossRef][PubMed]
    [Google Scholar]
  18. Hove-Jensen B., Rosenkrantz T. J., Haldimann A., Wanner B. L.. ( 2003;). Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways. J Bacteriol185:2793–2801 [CrossRef][PubMed]
    [Google Scholar]
  19. Jendresen C. B., Kilstrup M., Martinussen J.. ( 2011;). A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. Anal Biochem409:249–259 [CrossRef][PubMed]
    [Google Scholar]
  20. Jensen P. R., Hammer K.. ( 1993;). Minimal requirements for exponential growth of Lactococcus lactis . Appl Environ Microbiol59:4363–4366[PubMed]
    [Google Scholar]
  21. Jensen P. R., Hammer K.. ( 1998;). The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol64:82–87[PubMed]
    [Google Scholar]
  22. Jensen K. F., Dandanell G., Hove Jensen B., Willemoes M.. ( 2008;). Nucleotides, nucleosides, and nucleobases. Escherichia coli and Salmonella: Cellular and Molecular Biology Böck A., Curtiss R. III, Kaper J. B., Karp P. D., Neidhardt F. C., Nyström T., Slauch J. M., Squires C. L.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Kilstrup M., Martinussen J.. ( 1998;). A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis . J Bacteriol180:3907–3916[PubMed]
    [Google Scholar]
  24. Kilstrup M., Jessing S. G., Wichmand-Jørgensen S. B., Madsen M., Nilsson D.. ( 1998;). Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol180:3900–3906[PubMed]
    [Google Scholar]
  25. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J.. ( 2005;). Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev29:555–590 [CrossRef][PubMed]
    [Google Scholar]
  26. Kolb A., Busby S., Buc H., Garges S., Adhya S.. ( 1993;). Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–797 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar A., Grimes B., Fujita N., Makino K., Malloch R. A., Hayward R. S., Ishihama A.. ( 1994;). Role of the σ70 subunit of Escherichia coli RNA polymerase in transcription activation. J Mol Biol235:405–413 [CrossRef][PubMed]
    [Google Scholar]
  28. Martinussen J., Wadskov-Hansen S. L., Hammer K.. ( 2003;). Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol185:1503–1508 [CrossRef][PubMed]
    [Google Scholar]
  29. Martinussen J., Sørensen C., Jendresen C. B., Kilstrup M.. ( 2010;). Two nucleoside transporters in Lactococcus lactis with different substrate specificities. Microbiology156:3148–3157 [CrossRef][PubMed]
    [Google Scholar]
  30. Moll I., Grill S., Gualerzi C. O., Bläsi U.. ( 2002;). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol43:239–246 [CrossRef][PubMed]
    [Google Scholar]
  31. Nilsson D., Kilstrup M.. ( 1998;). Cloning and expression of the Lactococcus lactis purDEK genes, required for growth in milk. Appl Environ Microbiol64:4321–4327[PubMed]
    [Google Scholar]
  32. Nygaard P., Duckert P., Saxild H. H.. ( 1996;). Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis . J Bacteriol178:846–853[PubMed]
    [Google Scholar]
  33. Rajagopal L., Vo A., Silvestroni A., Rubens C. E.. ( 2005;). Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae . Mol Microbiol56:1329–1346 [CrossRef][PubMed]
    [Google Scholar]
  34. Saxild H. H., Nygaard P.. ( 1991;). Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J Gen Microbiol137:2387–2394[PubMed][CrossRef]
    [Google Scholar]
  35. Saxild H. H., Brunstedt K., Nielsen K. I., Jarmer H., Nygaard P.. ( 2001;). Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO . J Bacteriol183:6175–6183 [CrossRef][PubMed]
    [Google Scholar]
  36. Schneider T. D., Stephens R. M.. ( 1990;). Sequence logos: a new way to display consensus sequences. Nucleic Acids Res18:6097–6100 [CrossRef][PubMed]
    [Google Scholar]
  37. Shin B. S., Stein A., Zalkin H.. ( 1997;). Interaction of Bacillus subtilis purine repressor with DNA. J Bacteriol179:7394–7402[PubMed]
    [Google Scholar]
  38. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813[PubMed]
    [Google Scholar]
  39. Thomason L., Court D. L., Bubunenko M., Costantino N., Wilson H., Datta S., Oppenheim A.. ( 2007a;). Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol BiolChapter 1:1–, 16[PubMed]
    [Google Scholar]
  40. Thomason L. C., Costantino N., Shaw D. V., Court D. L.. ( 2007b;). Multicopy plasmid modification with phage λRed recombineering. Plasmid58:148–158 [CrossRef][PubMed]
    [Google Scholar]
  41. Travers A. A.. ( 1980;). Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J Bacteriol141:973–976[PubMed]
    [Google Scholar]
  42. Tulloch D. L., Finch L. R., Hillier A. J., Davidson B. E.. ( 1991;). Physical map of the chromosome of Lactococcus lactis subsp. lactis DL11 and localization of six putative rRNA operons. J Bacteriol173:2768–2775[PubMed]
    [Google Scholar]
  43. Wegmann U., O’Connell-Motherway M., Zomer A., Buist G., Shearman C., Canchaya C., Ventura M., Goesmann A., Gasson M. J.. & other authors ( 2007;). Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol189:3256–3270 [CrossRef][PubMed]
    [Google Scholar]
  44. Weng M., Nagy P. L., Zalkin H.. ( 1995;). Identification of the Bacillus subtilis pur operon repressor. Proc Natl Acad Sci U S A92:7455–7459 [CrossRef][PubMed]
    [Google Scholar]
  45. Zomer A. L., Buist G., Larsen R., Kok J., Kuipers O. P.. ( 2007;). Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol189:1366–1381 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059576-0
Loading
/content/journal/micro/10.1099/mic.0.059576-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error