1887

Abstract

No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits ( genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055459-0
2012-04-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1005.html?itemId=/content/journal/micro/10.1099/mic.0.055459-0&mimeType=html&fmt=ahah

References

  1. Achtman M.. ( 2008;). Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol62:53–70 [CrossRef][PubMed]
    [Google Scholar]
  2. Achtman M., Wagner M.. ( 2008;). Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol6:431–440[PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  4. Bashan A., Yonath A.. ( 2008;). Correlating ribosome function with high-resolution structures. Trends Microbiol16:326–335 [CrossRef][PubMed]
    [Google Scholar]
  5. Bishop C. J., Aanensen D. M., Jordan G. E., Kilian M., Hanage W. P., Spratt B. G.. ( 2009;). Assigning strains to bacterial species via the internet. BMC Biol7:3 [CrossRef][PubMed]
    [Google Scholar]
  6. Carver T. J., Rutherford K. M., Berriman M., Rajandream M. A., Barrell B. G., Parkhill J.. ( 2005;). act: the Artemis Comparison Tool. Bioinformatics21:3422–3423 [CrossRef][PubMed]
    [Google Scholar]
  7. Chain P. S., Grafham D. V., Fulton R. S., Fitzgerald M. G., Hostetler J., Muzny D., Ali J., Birren B., Bruce D. C.. & other authors ( 2009;). Genomics. Genome project standards in a new era of sequencing. Science326:236–237 [CrossRef][PubMed]
    [Google Scholar]
  8. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P.. ( 2006;). Toward automatic reconstruction of a highly resolved tree of life. Science311:1283–1287 [CrossRef][PubMed]
    [Google Scholar]
  9. Clarridge J. E. III. ( 2004;). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev17:840–862 [CrossRef][PubMed]
    [Google Scholar]
  10. Croucher N. J., Harris S. R., Fraser C., Quail M. A., Burton J., van der Linden M., McGee L., von Gottberg A., Song J. H.. & other authors ( 2011;). Rapid pneumococcal evolution in response to clinical interventions. Science331:430–434 [CrossRef][PubMed]
    [Google Scholar]
  11. Darling A. E., Mau B., Perna N. T.. ( 2010;). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  12. Dethlefsen L., McFall-Ngai M., Relman D. A.. ( 2007;). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature449:811–818 [CrossRef][PubMed]
    [Google Scholar]
  13. Didelot X., Falush D.. ( 2007;). Inference of bacterial microevolution using multilocus sequence data. Genetics175:1251–1266 [CrossRef][PubMed]
    [Google Scholar]
  14. Do T., Jolley K. A., Maiden M. C., Gilbert S. C., Clark D., Wade W. G., Beighton D.. ( 2009;). Population structure of Streptococcus oralis . Microbiology155:2593–2602 [CrossRef][PubMed]
    [Google Scholar]
  15. Doolittle W. F., Zhaxybayeva O.. ( 2009;). On the origin of prokaryotic species. Genome Res19:744–756 [CrossRef][PubMed]
    [Google Scholar]
  16. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  17. Feil E. J., Holmes E. C., Bessen D. E., Chan M. S., Day N. P., Enright M. C., Goldstein R., Hood D. W., Kalia A.. & other authors ( 2001;). Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci U S A98:182–187 [CrossRef][PubMed]
    [Google Scholar]
  18. Fraser C., Alm E. J., Polz M. F., Spratt B. G., Hanage W. P.. ( 2009;). The bacterial species challenge: making sense of genetic and ecological diversity. Science323:741–746 [CrossRef][PubMed]
    [Google Scholar]
  19. Fujita K., Baba T., Isono K.. ( 1998;). Genomic analysis of the genes encoding ribosomal proteins in eight eubacterial species and Saccharomyces cerevisiae . . Genome Inform Ser Workshop Genome Inform9:3–12[PubMed]
    [Google Scholar]
  20. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P.. & other authors ( 2005;). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  21. Gilbert J. A., Dupont C. L.. ( 2011;). Microbial metagenomics: beyond the genome. Annu Rev Mar Sci3:347–371 [CrossRef][PubMed]
    [Google Scholar]
  22. Gray J. P., Herwig R. P.. ( 1996;). Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol62:4049–4059[PubMed]
    [Google Scholar]
  23. Hansmann S., Martin W.. ( 2000;). Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol50:1655–1663 [CrossRef][PubMed]
    [Google Scholar]
  24. Harris S. R., Feil E. J., Holden M. T., Quail M. A., Nickerson E. K., Chantratita N., Gardete S., Tavares A., Day N.. & other authors ( 2010;). Evolution of MRSA during hospital transmission and intercontinental spread. Science327:469–474 [CrossRef][PubMed]
    [Google Scholar]
  25. Holmes E. C., Urwin R., Maiden M. C. J.. ( 1999;). The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis . Mol Biol Evol16:741–749[PubMed][CrossRef]
    [Google Scholar]
  26. Hunter P. R.. ( 1990;). Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol28:1903–1905[PubMed]
    [Google Scholar]
  27. Hunter P. R., Gaston M. A.. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol26:2465–2466[PubMed]
    [Google Scholar]
  28. Huson D. H., Bryant D.. ( 2006;). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol23:254–267 [CrossRef][PubMed]
    [Google Scholar]
  29. Jeffroy O., Brinkmann H., Delsuc F., Philippe H.. ( 2006;). Phylogenomics: the beginning of incongruence?. Trends Genet22:225–231 [CrossRef][PubMed]
    [Google Scholar]
  30. Jolley K. A., Maiden M. C.. ( 2010;). BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics11:595 [CrossRef][PubMed]
    [Google Scholar]
  31. Keim P., Van Ert M. N., Pearson T., Vogler A. J., Huynh L. Y., Wagner D. M.. ( 2004;). Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol4:205–213 [CrossRef][PubMed]
    [Google Scholar]
  32. Krieg N. R., Brenner D. J., Staley J. R.. ( 2005;). Bergey’s Manual of Systematic Bacteriology, 2nd revised edn.. New York: Springer-Verlag;
    [Google Scholar]
  33. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  34. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. ( 1992;). International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision Washington, DC: Published for the International Union of Microbiological Societies by American Society for Microbiology;
    [Google Scholar]
  35. Letunic I., Bork P.. ( 2011;). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res39:Web Server issueW475–W478 [CrossRef][PubMed]
    [Google Scholar]
  36. Lim E. L., Amaral L. A., Caron D. A., DeLong E. F.. ( 1993;). Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl Environ Microbiol59:1647–1655[PubMed]
    [Google Scholar]
  37. Maiden M. C.. ( 2006;). Multilocus sequence typing of bacteria. Annu Rev Microbiol60:561–588 [CrossRef][PubMed]
    [Google Scholar]
  38. Maiden M. C. J., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K.. & other authors ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A95:3140–3145 [CrossRef][PubMed]
    [Google Scholar]
  39. Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Anderson I., Lykidis A.. & other authors ( 2010;). The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res38:Database issueD382–D390 [CrossRef][PubMed]
    [Google Scholar]
  40. Matte-Tailliez O., Brochier C., Forterre P., Philippe H.. ( 2002;). Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol19:631–639 [CrossRef][PubMed]
    [Google Scholar]
  41. McGee L., McDougal L., Zhou J., Spratt B. G., Tenover F. C., George R., Hakenbeck R., Hryniewicz W., Lefévre J. C.. & other authors ( 2001;). Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol39:2565–2571 [CrossRef][PubMed]
    [Google Scholar]
  42. Medini D., Serruto D., Parkhill J., Relman D. A., Donati C., Moxon R., Falkow S., Rappuoli R.. ( 2008;). Microbiology in the post-genomic era. Nat Rev Microbiol6:419–430[PubMed]
    [Google Scholar]
  43. Moore E. R. B., Mihaylova S. A., Vandamme P., Krichevsky M. I., Dijkshoorn L.. ( 2010;). Microbial systematics and taxonomy: relevance for a microbial commons. Res Microbiol161:430–438 [CrossRef][PubMed]
    [Google Scholar]
  44. Morelli G., Song Y. J., Mazzoni C. J., Eppinger M., Roumagnac P., Wagner D. M., Feldkamp M., Kusecek B., Vogler A. J.. & other authors ( 2010;). Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet42:1140–1143 [CrossRef][PubMed]
    [Google Scholar]
  45. Nei M., Gojobori T.. ( 1986;). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol3:418–426[PubMed]
    [Google Scholar]
  46. Nelson K. E., Weinstock G. M., Highlander S. K., Worley K. C., Creasy H. H., Wortman J. R., Rusch D. B., Mitreva M., Sodergren E.. & other authors ( 2010;). A catalog of reference genomes from the human microbiome. Science328:994–999 [CrossRef][PubMed]
    [Google Scholar]
  47. Rappé M. S., Giovannoni S. J.. ( 2003;). The uncultured microbial majority. Annu Rev Microbiol57:369–394[PubMed][CrossRef]
    [Google Scholar]
  48. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  49. Roberts E., Sethi A., Montoya J., Woese C. R., Luthey-Schulten Z.. ( 2008;). Molecular signatures of ribosomal evolution. Proc Natl Acad Sci U S A105:13953–13958 [CrossRef][PubMed]
    [Google Scholar]
  50. Smith J. M., Dowson C. G., Spratt B. G.. ( 1991;). Localized sex in bacteria. Nature349:29–31 [CrossRef][PubMed]
    [Google Scholar]
  51. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  52. Swofford D.. ( 1998;). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates;
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  54. Teeling H., Gloeckner F. O.. ( 2006;). RibAlign: a software tool and database for eubacterial phylogeny based on concatenated ribosomal protein subunits. BMC Bioinformatics7:66 [CrossRef][PubMed]
    [Google Scholar]
  55. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  56. van Belkum A., Tassios P. T., Dijkshoorn L., Haeggman S., Cookson B., Fry N. K., Fussing V., Green J., Feil E.. & other authors ( 2007;). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect13:Suppl. 31–46 [CrossRef][PubMed]
    [Google Scholar]
  57. Woese C. R.. ( 1987;). Bacterial evolution. Microbiol Rev51:221–271[PubMed]
    [Google Scholar]
  58. Woese C. R., Kandler O., Wheelis M. L.. ( 1990;). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A87:4576–4579 [CrossRef][PubMed]
    [Google Scholar]
  59. Wu D. Y., Hartman A., Ward N., Eisen J. A.. ( 2008;). An automated phylogenetic tree-based small subunit rRNA taxonomy and alignment pipeline (STAP). PLoS ONE3:e2566 [CrossRef][PubMed]
    [Google Scholar]
  60. Wu D. Y., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M.. & other authors ( 2009;). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature462:1056–1060 [CrossRef][PubMed]
    [Google Scholar]
  61. Zerbino D. R.. ( 2010;). Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics11:11.5[PubMed]
    [Google Scholar]
  62. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055459-0
Loading
/content/journal/micro/10.1099/mic.0.055459-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error