1887

Abstract

Bacteriophages ΦeiAU and ΦeiDWF are lytic to the catfish pathogen () . The host factors that modulate phage–host interactions have not been described previously. This study identified eleven unique host factors essential for phage infection by screening a transposon mutagenized library of two strains for phage-resistant mutants. Two mutants were isolated with independent insertions in the gene that encodes a putative outer membrane porin. Phage binding and efficiency of plaquing assays with . EILO, its mutant and a complemented mutant demonstrated that OmpLC serves as a receptor for phage ΦeiAU and ΦeiDWF adsorption. Comparison of translated OmpLCs from 15 strains with varying degrees of phage susceptibility revealed that amino acid variations were clustered on the predicted extracellular loop 8 of OmpLC. Deletion of loop 8 of OmpLC completely abolished phage infectivity in . Site-directed mutagenesis and transfer of modified genes to complement the mutants demonstrated that changes in sequences affect the degree of phage susceptibility. Furthermore, strain Alg-08-183 was observed to be resistant to ΦeiAU, but phage progeny could be produced if phage DNA was electroporated into this strain. A host-range mutant of ΦeiAU, ΦeiAU-183, was isolated that was capable of infecting strain Alg-08-183 by using OmpLC as a receptor for adsorption. The results of this study identified host factors required for phage infection and indicated that OmpLC is a principal molecular determinant of phage susceptibility in this pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054866-0
2012-02-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/474.html?itemId=/content/journal/micro/10.1099/mic.0.054866-0&mimeType=html&fmt=ahah

References

  1. Adams M. H.. ( 1959;). Bacteriophages New York: Interscience Publishers;
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1999;). Short Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:2006–, 0008 [CrossRef][PubMed]
    [Google Scholar]
  4. Barua S., Yamashino T., Hasegawa T., Yokoyama K., Torii K., Ohta M.. ( 2002;). Involvement of surface polysaccharides in the organic acid resistance of Shiga Toxin-producing Escherichia coli O157:H7. Mol Microbiol43:629–640 [CrossRef][PubMed]
    [Google Scholar]
  5. Beacham I. R., Picken R. N.. ( 1981;). On the receptor for bacteriophage T4 in Escherichia coli K-12. Curr Microbiol6:291–293 [CrossRef]
    [Google Scholar]
  6. Beher M. G., Pugsley A. P.. ( 1981;). Coliphage which requires either the LamB protein or the OmpC protein for adsorption to Escherichia coli K-12. J Virol38:372–375[PubMed]
    [Google Scholar]
  7. Bizebard T., Ferlenghi I., Iost I., Dreyfus M.. ( 2004;). Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry43:7857–7866 [CrossRef][PubMed]
    [Google Scholar]
  8. Bordoli L., Kiefer F., Arnold K., Benkert P., Battey J., Schwede T.. ( 2009;). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc4:1–13 [CrossRef][PubMed]
    [Google Scholar]
  9. Capparelli R., Nocerino N., Lanzetta R., Silipo A., Amoresano A., Giangrande C., Becker K., Blaiotta G., Evidente A.. & other authors ( 2010;). Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS ONE5:e11720 [CrossRef][PubMed]
    [Google Scholar]
  10. Carrias A., Welch T. J., Waldbieser G. C., Mead D. A., Terhune J. S., Liles M. R.. ( 2011;). Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J8:6 [CrossRef][PubMed]
    [Google Scholar]
  11. Chai T. J., Foulds J.. ( 1978;). Two bacteriophages which utilize a new Escherichia coli major outer membrane protein as part of their receptor. J Bacteriol135:164–170[PubMed]
    [Google Scholar]
  12. Chamberlin M., McGrath J., Waskell L.. ( 1970;). New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature228:227–231 [CrossRef][PubMed]
    [Google Scholar]
  13. Charollais J., Pflieger D., Vinh J., Dreyfus M., Iost I.. ( 2003;). The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol Microbiol48:1253–1265 [CrossRef][PubMed]
    [Google Scholar]
  14. Charollais J., Dreyfus M., Iost I.. ( 2004;). CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res32:2751–2759 [CrossRef][PubMed]
    [Google Scholar]
  15. Chibeu A., Ceyssens P. J., Hertveldt K., Volckaert G., Cornelis P., Matthijs S., Lavigne R.. ( 2009;). The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent on expression regulation of type IV pili genes. FEMS Microbiol Lett296:210–218 [CrossRef][PubMed]
    [Google Scholar]
  16. Cole S. T., Chen-Schmeisser U., Hindennach I., Henning U.. ( 1983;). Apparent bacteriophage-binding region of an Escherichia coli K-12 outer membrane protein. J Bacteriol153:581–587[PubMed]
    [Google Scholar]
  17. Datta D. B., Arden B., Henning U.. ( 1977;). Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. J Bacteriol131:821–829[PubMed]
    [Google Scholar]
  18. DeLano W. L.. ( 2004;). Use of PYMOL as a communications tool for molecular science. Abstr Pap Am Chem Soc228:U313–U314
    [Google Scholar]
  19. Dharmgrongartama B., Mahadik S. P., Srinivasan P. R.. ( 1973;). Modification of RNA polymerase after T3 phage infection of Escherichia coli B. Proc Natl Acad Sci U S A70:2845–2849 [CrossRef][PubMed]
    [Google Scholar]
  20. Drexler K., Dannull J., Hindennach I., Mutschler B., Henning U.. ( 1991;). Single mutations in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol219:655–663 [CrossRef][PubMed]
    [Google Scholar]
  21. Dutzler R., Rummel G., Albertí S., Hernández-Allés S., Phale P. S., Rosenbusch J. P., Benedí V. J., Schirmer T.. ( 1999;). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure7:425–434 [CrossRef][PubMed]
    [Google Scholar]
  22. Evans T. J., Ind A., Komitopoulou E., Salmond G. P. C.. ( 2010;). Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol109:505–514[PubMed]
    [Google Scholar]
  23. Fineran P. C., Blower T. R., Foulds I. J., Humphreys D. P., Lilley K. S., Salmond G. P. C.. ( 2009;). The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci U S A106:894–899 [CrossRef][PubMed]
    [Google Scholar]
  24. Fortier L., Moineau S.. ( 2009;). Phage Production and Maintenance of Stocks, Including Expected Stock Lifetimes. Bacteriophages: Methods and Protocols203–219 Clokie M. R. J., Kropinski A. M.. New York: Humana Press; [CrossRef]
    [Google Scholar]
  25. Friedman D. I., Olson E. R., Georgopoulos C., Tilly K., Herskowitz I., Banuett F.. ( 1984;). Interactions of bacteriophage and host macromolecules in the growth of bacteriophage λ. Microbiol Rev48:299–325[PubMed]
    [Google Scholar]
  26. Gehring K., Charbit A., Brissaud E., Hofnung M.. ( 1987;). Bacteriophage λ receptor site on the Escherichia coli K-12 LamB protein. J Bacteriol169:2103–2106[PubMed]
    [Google Scholar]
  27. Guttman B., Raya R., Kutter E.. ( 2005;). Basic phage biology. In Bacteriophages Biology and Application29–66 Kutter E., Sulakvelidze A.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  28. Hashemolhosseini S., Holmes Z., Mutschler B., Henning U.. ( 1994;). Alterations of receptor specificities of coliphages of the T2 family. J Mol Biol240:105–110 [CrossRef][PubMed]
    [Google Scholar]
  29. Hawke J. P., Mcwhorter A. C., Steigerwalt A. G., Brenner D. J.. ( 1981;). Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int J Syst Bacteriol31:396–400 [CrossRef]
    [Google Scholar]
  30. Heine H. G., Francis G., Lee K. S., Ferenci T.. ( 1988;). Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure. J Bacteriol170:1730–1738[PubMed]
    [Google Scholar]
  31. Herrero M., de Lorenzo V., Timmis K. N.. ( 1990;). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol172:6557–6567[PubMed]
    [Google Scholar]
  32. Krüger D. H., Schroeder C.. ( 1981;). Bacteriophage T3 and bacteriophage T7 virus–host cell interactions. Microbiol Rev45:9–51[PubMed]
    [Google Scholar]
  33. Lenski R. E.. ( 1984;). Two-step resistance by Escherichia coli B to bacteriophage T2. Genetics107:1–7[PubMed]
    [Google Scholar]
  34. Lin-Chao S., Chen W. T., Wong T. T.. ( 1992;). High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol6:3385–3393 [CrossRef][PubMed]
    [Google Scholar]
  35. Lindberg A. A.. ( 1973;). Bacteriophage receptors. Annu Rev Microbiol27:205–241 [CrossRef][PubMed]
    [Google Scholar]
  36. Lundrigan M. D., Earhart C. F.. ( 1984;). Gene envY of Escherichia coli K-12 affects thermoregulation of major porin expression. J Bacteriol157:262–268[PubMed]
    [Google Scholar]
  37. Mark D. F., Richardson C. C.. ( 1976;). Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A73:780–784 [CrossRef][PubMed]
    [Google Scholar]
  38. Maurer J. K., Lawrence M. L., Fernandez D. H., Thune R. L.. ( 2001;). Evaluation and optimization of a DNA transfer system for Edwardsiella ictaluri. J Aquat Anim Health13:163–167 [CrossRef]
    [Google Scholar]
  39. Maynard N. D., Birch E. W., Sanghvi J. C., Chen L., Gutschow M. V., Covert M. W.. ( 2010;). A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS Genet6:e1001017 [CrossRef][PubMed]
    [Google Scholar]
  40. Menichi B., Buu A.. ( 1983;). Integration of the overproduced bacteriophage T5 receptor protein in the outer membrane of Escherichia coli. J Bacteriol154:130–138[PubMed]
    [Google Scholar]
  41. Miller V. L., Mekalanos J. J.. ( 1988;). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol170:2575–2583[PubMed]
    [Google Scholar]
  42. Moran A. P., O’Malley D. T., Kosunen T. U., Helander I. M.. ( 1994;). Biochemical characterization of Campylobacter fetus lipopolysaccharides. Infect Immun62:3922–3929[PubMed]
    [Google Scholar]
  43. Moreno F., Wandersman C.. ( 1980;). OmpC and LamB proteins can serve as substitute receptors for host range mutants of coliphage TuIa. J Bacteriol144:1182–1185[PubMed]
    [Google Scholar]
  44. Morona R., Henning U.. ( 1984;). Host range mutants of bacteriophage Ox2 can use two different outer membrane proteins of Escherichia coli K-12 as receptors. J Bacteriol159:579–582[PubMed]
    [Google Scholar]
  45. Ochman H., Gerber A. S., Hartl D. L.. ( 1988;). Genetic applications of an inverse polymerase chain reaction. Genetics120:621–623[PubMed]
    [Google Scholar]
  46. Py B., Higgins C. F., Krisch H. M., Carpousis A. J.. ( 1996;). A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature381:169–172 [CrossRef][PubMed]
    [Google Scholar]
  47. Qimron U., Marintcheva B., Tabor S., Richardson C. C.. ( 2006;). Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci U S A103:19039–19044 [CrossRef][PubMed]
    [Google Scholar]
  48. Rabsch W., Ma L., Wiley G., Najar F. Z., Kaserer W., Schuerch D. W., Klebba J. E., Roe B. A., Laverde Gomez J. A.. & other authors ( 2007;). FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. J Bacteriol189:5658–5674 [CrossRef][PubMed]
    [Google Scholar]
  49. Riede I., Degen M., Henning U.. ( 1985;). The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J4:2343–2346[PubMed]
    [Google Scholar]
  50. Roucourt B., Lavigne R.. ( 2009;). The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol11:2789–2805 [CrossRef][PubMed]
    [Google Scholar]
  51. Russo R., Panangala V. S., Wood R. R., Klesius P. H.. ( 2009;). Chemical and electroporated transformation of Edwardsiella ictaluri using three different plasmids. FEMS Microbiol Lett298:105–110 [CrossRef][PubMed]
    [Google Scholar]
  52. Santander J., Robeson J.. ( 2007;). Phage-resistance of Salmonella enterica serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide. Electron J Biotechnol10:627–632 [CrossRef]
    [Google Scholar]
  53. Schade S. Z., Adler J., Ris H.. ( 1967;). How bacteriophage χ attacks motile bacteria. J Virol1:599–609[PubMed]
    [Google Scholar]
  54. Schneider H., Fsihi H., Kottwitz B., Mygind B., Bremer E.. ( 1993;). Identification of a segment of the Escherichia coli Tsx protein that functions as a bacteriophage receptor area. J Bacteriol175:2809–2817[PubMed]
    [Google Scholar]
  55. Silverman J. A., Benson S. A.. ( 1987;). Bacteriophage K20 requires both the OmpF porin and lipopolysaccharide for receptor function. J Bacteriol169:4830–4833[PubMed]
    [Google Scholar]
  56. Simon R., Priefer U., Puhler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  57. Skurnik M., Zhang L.. ( 1996;). Molecular genetics and biochemistry of Yersinia lipopolysaccharide. APMIS104:849–872 [CrossRef][PubMed]
    [Google Scholar]
  58. Skurnik M., Venho R., Toivanen P., al-Hendy A.. ( 1995;). A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol17:575–594 [CrossRef][PubMed]
    [Google Scholar]
  59. Sukupolvi S.. ( 1984;). Role of lipopolysaccharide in the receptor function for bacteriophage Ox2. FEMS Microbiol Lett21:83–87 [CrossRef]
    [Google Scholar]
  60. Thune R. L., Fernandez D. H., Benoit J. L., Kelly-Smith M., Rogge M. L., Booth N. J., Landry C. A., Bologna R. A.. ( 2007;). Signature-tagged mutagenesis of Edwardsiella ictaluri identifies virulence-related genes, including a Salmonella pathogenicity island 2 class of type III secretion systems. Appl Environ Microbiol73:7934–7946 [CrossRef][PubMed]
    [Google Scholar]
  61. Walakira J. K., Carrias A. A., Hossain M. J., Jones E., Terhune J. S., Liles M. R.. ( 2008;). Identification and characterization of bacteriophages specific to the catfish pathogen, Edwardsiella ictaluri. J Appl Microbiol105:2133–2142 [CrossRef][PubMed]
    [Google Scholar]
  62. Williams M. L., Azadi P., Lawrence M. L.. ( 2003;). Comparison of cellular and extracellular products expressed by virulent and attenuated strains of Edwardsiella ictaluri.. J Aquat Anim Health15:264–273 [CrossRef]
    [Google Scholar]
  63. Yu F., Mizushima S.. ( 1982;). Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol151:718–722[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054866-0
Loading
/content/journal/micro/10.1099/mic.0.054866-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error