1887

Abstract

produces as biosurfactants rhamnolipids, containing one (mono-rhamnolipid) or two (di-rhamnolipid) -rhamnose molecules. The rhamnosyltransferase RhlB catalyses the synthesis of mono-rhamnolipid using as precursors dTDP--rhamnose and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) produced by RhlA, while the rhamnosyltransferase RhlC synthesizes di-rhamnolipid using mono-rhamnolipid and dTDP--rhamnose as substrates. The Las and Rhl quorum-sensing systems coordinately regulate the production of these surfactants, as well as that of other exoproducts involved in bacterial virulence, at the transcriptional level in a cell density-dependent manner. In this work we study the transcriptional regulation of the operon, encoding the enzymes involved in the production of dTDP--rhamnose, the substrate of both rhamnosyltransferases, RhlB and RhlC, and also a component of lipopolysaccharide. Here we show that the operon possesses three promoters. One of these transcriptional start sites (P2) is responsible for most of its expression and is dependent on the stationary phase sigma factor σ and on RhlR/C-HSL through its binding to an atypical ‘las box’.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054726-0
2012-04-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/908.html?itemId=/content/journal/micro/10.1099/mic.0.054726-0&mimeType=html&fmt=ahah

References

  1. Bozue J. A., Parthasarathy N., Phillips L. R., Cote C. K., Fellows P. F., Mendelson I., Shafferman A., Friedlander A. M.. ( 2005;). Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog38:1–12 [CrossRef][PubMed]
    [Google Scholar]
  2. Cabrera-Valladares N., Richardson A.-P., Olvera C., Treviño L. G., Déziel E., Lépine F., Soberón-Chávez G.. ( 2006;). Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol73:187–194 [CrossRef][PubMed]
    [Google Scholar]
  3. Casadaban M. J.. ( 1976;). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555 [CrossRef][PubMed]
    [Google Scholar]
  4. Croda-García G., Grosso-Becerra V., González-Valdez A. A., Servín-González L., Soberón-Chávez G.. ( 2011;). Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology157:2545–2555 [CrossRef][PubMed]
    [Google Scholar]
  5. de Kievit T. R., Kakai Y., Register J. K., Pesci E. C., Iglewski B. H.. ( 2002;). Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett212:101–106 [CrossRef][PubMed]
    [Google Scholar]
  6. Déziel E., Lépine F., Milot S., Villemur R.. ( 2003;). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology149:2005–2013 [CrossRef][PubMed]
    [Google Scholar]
  7. Engels-Deutsch M., Pini A., Yamashita Y., Shibata Y., Haikel Y., Schöller-Guinard M., Klein J.-P.. ( 2003;). Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells. Infect Immun71:5169–5177 [CrossRef][PubMed]
    [Google Scholar]
  8. Hancock R. E. W., Carey A. M.. ( 1979;). Outer membrane of Pseudomonas aeruginosa: heat- and 2-mercaptoethanol-modifiable proteins. J Bacteriol140:902–910[PubMed]
    [Google Scholar]
  9. Kiratisin P., Tucker K. D., Passador L.. ( 2002;). LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol184:4912–4919 [CrossRef][PubMed]
    [Google Scholar]
  10. Lazdunski A. M., Ventre I., Sturgis J. N.. ( 2004;). Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol2:581–592 [CrossRef][PubMed]
    [Google Scholar]
  11. Ma Y., Mills J. A., Belisle J. T., Vissa V., Howell M., Bowlin K., Scherman M. S., McNeil M.. ( 1997;). Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding α-d-glucose-1-phosphate thymidylyltransferase. Microbiology143:937–945 [CrossRef][PubMed]
    [Google Scholar]
  12. Ma Y., Stern R. J., Scherman M. S., Vissa V. D., Yan W., Jones V. C., Zhang F., Franzblau S. G., Lewis W. H., McNeil M. R.. ( 2001;). Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother45:1407–1416 [CrossRef][PubMed]
    [Google Scholar]
  13. Marumo K., Lindqvist L., Verma N., Weintraub A., Reeves P. R., Lindberg A. A.. ( 1992;). Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-d-xylo-4-hexulose and thymidine diphosphate-l-rhamnose. Production using cloned gene products and separation by HPLC. Eur J Biochem204:539–545 [CrossRef][PubMed]
    [Google Scholar]
  14. Medina G., Juárez K., Díaz R., Soberón-Chávez G.. ( 2003a;). Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology149:3073–3081 [CrossRef][PubMed]
    [Google Scholar]
  15. Medina G., Juárez K., Soberón-Chávez G.. ( 2003b;). The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol185:377–380 [CrossRef][PubMed]
    [Google Scholar]
  16. Medina G., Juárez K., Valderrama B., Soberón-Chávez G.. ( 2003c;). Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol185:5976–5983 [CrossRef][PubMed]
    [Google Scholar]
  17. Miller J. H.. ( 1972;). Experiments in Molecular Genetics431–435 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Müller M. M., Hausmann R.. ( 2011;). Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol91:251–264 [CrossRef][PubMed]
    [Google Scholar]
  19. Ochsner U. A., Fiechter A., Reiser J.. ( 1994;). Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem269:19787–19795[PubMed]
    [Google Scholar]
  20. Pearson J. P., Pesci E. C., Iglewski B. H.. ( 1997;). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767[PubMed]
    [Google Scholar]
  21. Rahim R., Burrows L. L., Monteiro M. A., Perry M. B., Lam J. S.. ( 2000;). Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology146:2803–2814[PubMed]
    [Google Scholar]
  22. Rahim R., Ochsner U. A., Olvera C., Graninger M., Messner P., Lam J. S., Soberón-Chávez G.. ( 2001;). Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol40:708–718 [CrossRef][PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schuster M., Greenberg E. P.. ( 2007;). Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics8:287http://www.biomedcentral.com/1471-2164/8/287 [CrossRef][PubMed]
    [Google Scholar]
  25. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. ( 2003;). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079 [CrossRef][PubMed]
    [Google Scholar]
  26. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P.. ( 2004a;). The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol51:973–985 [CrossRef][PubMed]
    [Google Scholar]
  27. Schuster M., Urbanowski M. L., Greenberg E. P.. ( 2004b;). Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A101:15833–15839 [CrossRef][PubMed]
    [Google Scholar]
  28. Simons R. W., Houman F., Kleckner N.. ( 1987;). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  29. Soberón-Chávez G., Aguirre-Ramírez M., Ordóñez L. G.. ( 2005a;). Is Pseudomonas aeruginosa only “sensing quorum”?. Crit Rev Microbiol31:171–182 [CrossRef][PubMed]
    [Google Scholar]
  30. Soberón-Chávez G., Lépine F., Déziel E.. ( 2005b;). Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol68:718–725 [CrossRef][PubMed]
    [Google Scholar]
  31. Spaink H., Okker R., Wijffelman C., Pees E., Lugtenberg B.. ( 1987;). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1Jl. Plant Mol Biol9:27–39 [CrossRef]
    [Google Scholar]
  32. Typas A., Hengge R.. ( 2006;). Role of the spacer between the −35 and −10 regions in σS promoter selectivity in Escherichia coli. Mol Microbiol59:1037–1051 [CrossRef][PubMed]
    [Google Scholar]
  33. von Bodman S. B., Willey J. M., Diggle S. P.. ( 2008;). Cell-cell communication in bacteria: united we stand. J Bacteriol190:4377–4391 [CrossRef][PubMed]
    [Google Scholar]
  34. Whiteley M., Greenberg E. P.. ( 2001;). Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol183:5529–5534 [CrossRef][PubMed]
    [Google Scholar]
  35. Whiteley M., Lee K. M., Greenberg E. P.. ( 1999;). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:13904–13909 [CrossRef][PubMed]
    [Google Scholar]
  36. Williams P., Cámara M.. ( 2009;). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol12:182–191 [CrossRef][PubMed]
    [Google Scholar]
  37. Winzer K., Falconer C., Garber N. C., Diggle S. P., Cámara M., Williams P.. ( 2000;). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol182:6401–6411 [CrossRef][PubMed]
    [Google Scholar]
  38. Yang H., Matewish M., Loubens I., Storey D. G., Lam J. S., Jin S.. ( 2000;). migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology146:2509–2519[PubMed]
    [Google Scholar]
  39. Zhang Y., Miller R. M.. ( 1992;). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol58:3276–3282[PubMed]
    [Google Scholar]
  40. Zulianello L., Canard C., Köhler T., Caille D., Lacroix J.-S., Meda P.. ( 2006;). Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun74:3134–3147 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054726-0
Loading
/content/journal/micro/10.1099/mic.0.054726-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error