1887

Abstract

We have reported that is extremely resistant to reactive nitrogen species (RNS) including peroxynitrite (PN). Recent literature suggests that catalase can provide protection against commercial preparations of PN. Though wild-type gonococci were shown to be highly resistant to 2 mM PN, and a gonococcal mutant were both shown to be extremely sensitive to 2 mM PN. Analysis of translational fusions to of the catalase promoters from and demonstrated that basal expression from gonococci is 80-fold higher than in meningococci, though meningococcal retains a greater capacity to be activated by OxyR. This activation capacity was shown to be due to a single base pair difference in the −10 transcription element between the two promoters. PN resistance was initially shown to be associated with increasing catalase expression; however, commercial preparations of PN were later revealed to contain higher levels of contaminating hydrogen peroxide (HO) than expected. Removal of HO from PN preparations with manganese dioxide markedly reduced PN toxicity in a gonococcal mutant. Simultaneous treatment with non-lethal concentrations of PN and HO was highly lethal, indicating that these agents act synergistically. When treatment was separated by 5 min, high levels of bacterial killing occurred only when PN was added first. Our results suggest that killing of Δ by commercial PN preparations is likely due to HO, that HO is more toxic in the presence of PN, and that PN, on its own, may not be as toxic as previously believed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053686-0
2012-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/2/560.html?itemId=/content/journal/micro/10.1099/mic.0.053686-0&mimeType=html&fmt=ahah

References

  1. Alam M. S. , Zaki M. H. , Yoshitake J. , Akuta T. , Ezaki T. , Akaike T. . ( 2006; ). Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection. . Microb Pathog 40:, 116–125. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alcorn T. M. , Zheng H. Y. , Gunther M. R. , Hassett D. J. , Cohen M. S. . ( 1994; ). Variation in hydrogen peroxide sensitivity between different strains of Neisseria gonorrhoeae is dependent on factors in addition to catalase activity. . Infect Immun 62:, 2138–2140.[PubMed]
    [Google Scholar]
  3. Alvarez B. , Radi R. . ( 2003; ). Peroxynitrite reactivity with amino acids and proteins. . Amino Acids 25:, 295–311. [CrossRef] [PubMed]
    [Google Scholar]
  4. Alvarez M. N. , Piacenza L. , Irigoín F. , Peluffo G. , Radi R. . ( 2004; ). Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi . . Arch Biochem Biophys 432:, 222–232. [CrossRef] [PubMed]
    [Google Scholar]
  5. Archibald F. S. , Duong M. N. . ( 1986; ). Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria . . Infect Immun 51:, 631–641.[PubMed]
    [Google Scholar]
  6. Augusto O. , Bonini M. G. , Amanso A. M. , Linares E. , Santos C. C. , De Menezes S. L. . ( 2002; ). Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. . Free Radic Biol Med 32:, 841–859. [CrossRef] [PubMed]
    [Google Scholar]
  7. Barth K. R. , Isabella V. M. , Wright L. F. , Clark V. L. . ( 2009; ). Resistance to peroxynitrite in Neisseria gonorrhoeae . . Microbiology 155:, 2532–2545. [CrossRef] [PubMed]
    [Google Scholar]
  8. Beckman J. S. , Koppenol W. H. . ( 1996; ). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. . Am J Physiol 271:, C1424–C1437.[PubMed]
    [Google Scholar]
  9. Bienert G. P. , Schjoerring J. K. , Jahn T. P. . ( 2006; ). Membrane transport of hydrogen peroxide. . Biochim Biophys Acta 1758:, 994–1003. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bisaillon J. G. , Dubois G. , Beaudet R. , Sylvestre M. , Charbonneau R. , Gagnon M. . ( 1985; ). Quantitative determination of catalase activity produced by Neisseria gonorrhoeae, Staphylococcus epidermidis, Neisseria meningitidis and other bacterial strains using the Catalasemeter. . Exp Biol 43:, 225–230.[PubMed]
    [Google Scholar]
  11. Bogdan C. , Röllinghoff M. , Diefenbach A. . ( 2000; ). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. . Curr Opin Immunol 12:, 64–76. [CrossRef] [PubMed]
    [Google Scholar]
  12. Brunelli L. , Crow J. P. , Beckman J. S. . ( 1995; ). The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli . . Arch Biochem Biophys 316:, 327–334. [CrossRef] [PubMed]
    [Google Scholar]
  13. Burney S. , Caulfield J. L. , Niles J. C. , Wishnok J. S. , Tannenbaum S. R. . ( 1999; ). The chemistry of DNA damage from nitric oxide and peroxynitrite. . Mutat Res 424:, 37–49. [CrossRef] [PubMed]
    [Google Scholar]
  14. Casey S. G. , Shafer W. M. , Spitznagel J. K. . ( 1986; ). Neisseria gonorrhoeae survive intraleukocytic oxygen-independent antimicrobial capacities of anaerobic and aerobic granulocytes in the presence of pyocin lethal for extracellular gonococci. . Infect Immun 52:, 384–389.[PubMed]
    [Google Scholar]
  15. Dyet K. , Moir J. . ( 2006; ). Effect of combined oxidative and nitrosative stress on Neisseria meningitidis . . Biochem Soc Trans 34:, 197–199. [CrossRef] [PubMed]
    [Google Scholar]
  16. Edwards J. L. . ( 2010; ). Neisseria gonorrhoeae survival during primary human cervical epithelial cell infection requires nitric oxide and is augmented by progesterone. . Infect Immun 78:, 1202–1213. [CrossRef] [PubMed]
    [Google Scholar]
  17. Edwards J. L. , Apicella M. A. . ( 2004; ). The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. . Clin Microbiol Rev 17:, 965–981. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gebicka L. , Didik J. . ( 2009; ). Catalytic scavenging of peroxynitrite by catalase. . J Inorg Biochem 103:, 1375–1379. [CrossRef] [PubMed]
    [Google Scholar]
  19. Goldstein S. , Merényi G. . ( 2008; ). The chemistry of peroxynitrite: implications for biological activity. . Methods Enzymol 436:, 49–61. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hampton M. B. , Kettle A. J. , Winterbourn C. C. . ( 1998; ). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. . Blood 92:, 3007–3017.[PubMed]
    [Google Scholar]
  21. Heaselgrave W. , Andrew P. W. , Kilvington S. . ( 2010; ). Acidified nitrite enhances hydrogen peroxide disinfection of Acanthamoeba, bacteria and fungi. . J Antimicrob Chemother 65:, 1207–1214. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hughes M. N. , Nicklin H. G. . ( 1970; ). The chemistry of peroxonitrites. Part II. Copper (II)-catalysed reaction between hydroxylamine and peroxonitrite in alkali. . J Chem Soc 925–928.[CrossRef]
    [Google Scholar]
  23. Ieva R. , Roncarati D. , Metruccio M. M. , Seib K. L. , Scarlato V. , Delany I. . ( 2008; ). OxyR tightly regulates catalase expression in Neisseria meningitidis through both repression and activation mechanisms. . Mol Microbiol 70:, 1152–1165. [CrossRef] [PubMed]
    [Google Scholar]
  24. Inoue S. , Kawanishi S. . ( 1987; ). Hydroxyl radical production and human DNA damage induced by ferric nitrilotriacetate and hydrogen peroxide. . Cancer Res 47:, 6522–6527.[PubMed]
    [Google Scholar]
  25. Kellogg D. S. Jr , Peacock W. L. Jr , Deacon W. E. , Brown L. , Pirkle D. I. . ( 1963; ). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. . J Bacteriol 85:, 1274–1279.[PubMed]
    [Google Scholar]
  26. Kono Y. , Shibata H. , Adachi K. , Tanaka K. . ( 1994; ). Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. . Arch Biochem Biophys 311:, 153–159. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kuwahara H. , Miyamoto Y. , Akaike T. , Kubota T. , Sawa T. , Okamoto S. , Maeda H. . ( 2000; ). Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. . Infect Immun 68:, 4378–4383. [CrossRef] [PubMed]
    [Google Scholar]
  28. McLean S. , Bowman L. A. , Poole R. K. . ( 2010; ). KatG from Salmonella typhimurium is a peroxynitritase. . FEBS Lett 584:, 1628–1632. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mehr I. J. , Seifert H. S. . ( 1998; ). Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. . Mol Microbiol 30:, 697–710. [CrossRef] [PubMed]
    [Google Scholar]
  30. Miller J. H. . ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  31. Pacelli R. , Wink D. A. , Cook J. A. , Krishna M. C. , DeGraff W. , Friedman N. , Tsokos M. , Samuni A. , Mitchell J. B. . ( 1995; ). Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli . . J Exp Med 182:, 1469–1479. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pacher P. , Beckman J. S. , Liaudet L. . ( 2007; ). Nitric oxide and peroxynitrite in health and disease. . Physiol Rev 87:, 315–424. [CrossRef] [PubMed]
    [Google Scholar]
  33. Potter A. J. , Kidd S. P. , Edwards J. L. , Falsetta M. L. , Apicella M. A. , Jennings M. P. , McEwan A. G. . ( 2009a; ). Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells. . J Infect Dis 199:, 227–235. [CrossRef] [PubMed]
    [Google Scholar]
  34. Potter A. J. , Kidd S. P. , Edwards J. L. , Falsetta M. L. , Apicella M. A. , Jennings M. P. , McEwan A. G. . ( 2009b; ). Esterase D is essential for protection of Neisseria gonorrhoeae against nitrosative stress and for bacterial growth during interaction with cervical epithelial cells. . J Infect Dis 200:, 273–278. [CrossRef] [PubMed]
    [Google Scholar]
  35. Prinz W. A. , Aslund F. , Holmgren A. , Beckwith J. . ( 1997; ). The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. . J Biol Chem 272:, 15661–15667. [CrossRef] [PubMed]
    [Google Scholar]
  36. Radi R. , Beckman J. S. , Bush K. M. , Freeman B. A. . ( 1991; ). Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. . Arch Biochem Biophys 288:, 481–487. [CrossRef] [PubMed]
    [Google Scholar]
  37. Richardson D. E. , Yao H. R. , Frank K. M. , Bennett D. A. . ( 2000; ). Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: oxidation of sulfides by peroxymonocarbonate. . J Am Chem Soc 122:, 1729–1739. [CrossRef]
    [Google Scholar]
  38. Sahoo R. , Bhattacharjee A. , Majumdar U. , Ray S. S. , Dutta T. , Ghosh S. . ( 2009; ). A novel role of catalase in detoxification of peroxynitrite in S. cerevisiae . . Biochem Biophys Res Commun 385:, 507–511. [CrossRef] [PubMed]
    [Google Scholar]
  39. Schmidt K. , Pfeiffer S. , Mayer B. . ( 1998; ). Reaction of peroxynitrite with HEPES or MOPS results in the formation of nitric oxide donors. . Free Radic Biol Med 24:, 859–862. [CrossRef] [PubMed]
    [Google Scholar]
  40. Seib K. L. , Jennings M. P. , McEwan A. G. . ( 2003; ). A Sco homologue plays a role in defence against oxidative stress in pathogenic Neisseria . . FEBS Lett 546:, 411–415. [CrossRef] [PubMed]
    [Google Scholar]
  41. Seib K. L. , Tseng H. J. , McEwan A. G. , Apicella M. A. , Jennings M. P. . ( 2004; ). Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. . J Infect Dis 190:, 136–147. [CrossRef] [PubMed]
    [Google Scholar]
  42. Seib K. L. , Wu H. J. , Kidd S. P. , Apicella M. A. , Jennings M. P. , McEwan A. G. . ( 2006; ). Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. . Microbiol Mol Biol Rev 70:, 344–361. [CrossRef] [PubMed]
    [Google Scholar]
  43. Silver L. E. , Clark V. L. . ( 1995; ). Construction of a translational lacZ fusion system to study gene regulation in Neisseria gonorrhoeae . . Gene 166:, 101–104. [CrossRef] [PubMed]
    [Google Scholar]
  44. Simons M. P. , Nauseef W. M. , Apicella M. A. . ( 2005; ). Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. . Infect Immun 73:, 1971–1977. [CrossRef] [PubMed]
    [Google Scholar]
  45. Soler-García A. A. , Jerse A. E. . ( 2004; ). A Neisseria gonorrhoeae catalase mutant is more sensitive to hydrogen peroxide and paraquat, an inducer of toxic oxygen radicals. . Microb Pathog 37:, 55–63. [CrossRef] [PubMed]
    [Google Scholar]
  46. Stohl E. A. , Criss A. K. , Seifert H. S. . ( 2005; ). The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. . Mol Microbiol 58:, 520–532. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tseng H. J. , McEwan A. G. , Apicella M. A. , Jennings M. P. . ( 2003; ). OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae . . Infect Immun 71:, 550–556. [CrossRef] [PubMed]
    [Google Scholar]
  48. Uppu R. M. . ( 2006; ). Synthesis of peroxynitrite using isoamyl nitrite and hydrogen peroxide in a homogeneous solvent system. . Anal Biochem 354:, 165–168. [CrossRef] [PubMed]
    [Google Scholar]
  49. Uppu R. M. , Pryor W. A. . ( 1996; ). Biphasic synthesis of high concentrations of peroxynitrite using water-insoluble alkyl nitrite and hydrogen peroxide. . Methods Enzymol 269:, 322–329. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wengenack N. L. , Jensen M. P. , Rusnak F. , Stern M. K. . ( 1999; ). Mycobacterium tuberculosis KatG is a peroxynitritase. . Biochem Biophys Res Commun 256:, 485–487. [CrossRef] [PubMed]
    [Google Scholar]
  51. Yu K. , Mitchell C. , Xing Y. , Magliozzo R. S. , Bloom B. R. , Chan J. . ( 1999; ). Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. . Tuber Lung Dis 79:, 191–198. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zhang Y. , Hogg N. . ( 2004; ). Formation and stability of S-nitrosothiols in RAW 264.7 cells. . Am J Physiol Lung Cell Mol Physiol 287:, L467–L474. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zheng M. , Aslund F. , Storz G. . ( 1998; ). Activation of the OxyR transcription factor by reversible disulfide bond formation. . Science 279:, 1718–1722. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhu L. , Gunn C. , Beckman J. S. . ( 1992; ). Bactericidal activity of peroxynitrite. . Arch Biochem Biophys 298:, 452–457. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053686-0
Loading
/content/journal/micro/10.1099/mic.0.053686-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error