1887

Abstract

The emergence and spread of antibiotic resistance in pathogens is a major impediment to the control of microbial disease. Here, we review mechanisms of quinolone resistance in , an important nosocomial pathogen and a major cause of morbidity in cystic fibrosis (CF) patients. In this quantitative literature review, we find that mutations in DNA gyrase A, the primary target of quinolones in Gram-negative bacteria, are the most common resistance mutations identified in clinical samples of all origins, in keeping with previous observations. However, the identities of non-gyrase resistance mutations vary systematically between samples isolated from CF patients and those isolated from acute infections. CF-derived strains tend to harbour mutations in the efflux pump regulator , while non-CF strains tend to bear mutations in the efflux regulator or in , which encodes one of two subunits of DNA topoisomerase IV. We suggest that differences in resistance mechanisms between CF and non-CF strains result either from local adaptation to different sites of infection or from differences in mutational processes between different environments. We further discuss the therapeutic implications of local differentiation in resistance mechanisms to a common antibiotic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046870-0
2011-04-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/937.html?itemId=/content/journal/micro/10.1099/mic.0.046870-0&mimeType=html&fmt=ahah

References

  1. Albert T. J., Dailidiene D., Dailide G., Norton J. E., Kalia A., Richmond T. A., Molla M., Singh J., Green R. D., Berg D. E.. 2005; Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori . Nat Methods2:951–953
    [Google Scholar]
  2. Andersson D. I.. 2006; The biological cost of mutational antibiotic resistance: any practical conclusions?. Curr Opin Microbiol9:461–465
    [Google Scholar]
  3. Bagel S., Hüllen V., Wiedemann B., Heisig P.. 1999; Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli . Antimicrob Agents Chemother43:868–875
    [Google Scholar]
  4. Bell M. A., Foster S. A.. 1994; The Evolutionary Biology of the Threespine Stickleback Oxford: Oxford University Press;
    [Google Scholar]
  5. Björkman J., Nagaev I., Berg O. G., Hughes D., Andersson D. I.. 2000; Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science287:1479–1482
    [Google Scholar]
  6. Breidenstein E. B. M., Khaira B. K., Wiegand I., Overhage J., Hancock R. E.. 2008; Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother52:4486–4491
    [Google Scholar]
  7. Brown S. A., Palmer K. L., Whiteley M.. 2008; Revisiting the host as a growth medium. Nat Rev Microbiol6:657–666
    [Google Scholar]
  8. Cambau E., Perani E., Dib C., Petinon C., Trias J., Jarlier V.. 1995; Role of mutations in DNA gyrase genes in ciprofloxacin resistance of Pseudomonas aeruginosa susceptible or resistant to imipenem. Antimicrob Agents Chemother39:2248–2252
    [Google Scholar]
  9. CDC 2010; National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2008 Atlanta, GA: Centers For Disease Control;
    [Google Scholar]
  10. Chen F. J., Lo H. J.. 2003; Molecular mechanisms of fluoroquinolone resistance. J Microbiol Immunol Infect36:1–9
    [Google Scholar]
  11. Corey M., Farewell V.. 1996; Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol143:1007–1017
    [Google Scholar]
  12. D'Argenio D. A., Wu M., Hoffman L. R., Kulasekara H. D., Déziel E., Smith E. E., Nguyen H., Ernst R. K., Larson Freeman T. J.. other authors 2007; Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol64:512–533
    [Google Scholar]
  13. Dean A. M.. 1995; A molecular investigation of genotype by environment interactions. Genetics139:19–33
    [Google Scholar]
  14. Diver J. M., Schollaardt T., Rabin H. R., Thorson C., Bryan L. E.. 1991; Persistence mechanisms in Pseudomonas aeruginosa from cystic fibrosis patients undergoing ciprofloxacin therapy. Antimicrob Agents Chemother35:1538–1546
    [Google Scholar]
  15. Emmerson A. M., Jones A. M.. 2003; The quinolones: decades of development and use. J Antimicrob Chemother51:Suppl. 113–20
    [Google Scholar]
  16. Fung-Tomc J., Kolek B., Bonner D. P.. 1993; Ciprofloxacin-induced, low-level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother37:1289–1296
    [Google Scholar]
  17. Government of Canada 2007; Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS Guelph, ON: Public Health Agency of Canada;
    [Google Scholar]
  18. Halligan D. L., Keightley P. D.. 2009; Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst40:151–172
    [Google Scholar]
  19. Hancock R. E. W.. 1998; Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis27:Suppl. 1S93–S99
    [Google Scholar]
  20. Hassett D. J., Sutton M. D., Schurr M. J., Herr A. B., Caldwell C. C., Matu J. O.. 2009; Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol17:130–138
    [Google Scholar]
  21. Hedrick P. W.. 2006; Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Evol Syst37:67–93
    [Google Scholar]
  22. Henrichfreise B., Wiegand I., Pfister W., Wiedemann B.. 2007; Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother51:4062–4070
    [Google Scholar]
  23. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O.. 2010; Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents35:322–332
    [Google Scholar]
  24. Hoogkamp-Korstanje J. A., van Oort H. J., Schipper J. J., van der Wal T.. 1984; Intraprostatic concentration of ciprofloxacin and its activity against urinary pathogens. J Antimicrob Chemother14:641–645
    [Google Scholar]
  25. Jacoby G. A.. 2005; Mechanisms of resistance to quinolones. Clin Infect Dis41:Suppl. 2S120–S126
    [Google Scholar]
  26. Jakics E. B., Iyobe S., Hirai K., Fukuda H., Hashimoto H.. 1992; Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother36:2562–2565
    [Google Scholar]
  27. Joukhadar C., Dehghanyar P., Traunmüller F., Sauermann R., Mayer-Helm B., Georgopoulos A., Müller M.. 2005; Increase of microcirculatory blood flow enhances penetration of ciprofloxacin into soft tissue. Antimicrob Agents Chemother49:4149–4153
    [Google Scholar]
  28. Kassen R., Bataillon T.. 2006; Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nat Genet38:484–488
    [Google Scholar]
  29. Kugelberg E., Löfmark S., Wretlind B., Andersson D. I.. 2005; Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa . J Antimicrob Chemother55:22–30
    [Google Scholar]
  30. Kureishi A., Diver J. M., Beckthold B., Schollaardt T., Bryan L. E.. 1994; Cloning and nucleotide sequence of Pseudomonas aeruginosa DNA gyrase gyrA gene from strain PAO1 and quinolone-resistant clinical isolates. Antimicrob Agents Chemother38:1944–1952
    [Google Scholar]
  31. Luria S. E., Delbrück M.. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics28:491–511
    [Google Scholar]
  32. Martínez-Martínez L., Pascual A., Jacoby G. A.. 1998; Quinolone resistance from a transferable plasmid. Lancet351:797–799
    [Google Scholar]
  33. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T.. 2000; Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother44:3322–3327
    [Google Scholar]
  34. Mathee K., Narasimhan G., Valdes C., Qiu X., Matewish J. M., Koehrsen M., Rokas A., Yandava C. N., Engels R.. other authors 2008; Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A105:3100–3105
    [Google Scholar]
  35. Nöllmann M., Crisona N. J., Arimondo P. B.. 2007; Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie89:490–499
    [Google Scholar]
  36. Palmer K. L., Aye L. M., Whiteley M.. 2007; Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol189:8079–8087
    [Google Scholar]
  37. Pedersen S. S., Jensen T., Hvidberg E. F.. 1987; Comparative pharmacokinetics of ciprofloxacin and ofloxacin in cystic fibrosis patients. J Antimicrob Chemother20:575–583
    [Google Scholar]
  38. Perron G. G., Hall A. R., Buckling A.. 2010; Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am Nat176:303–311
    [Google Scholar]
  39. Piddock L. J.. 1999; Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs58:Suppl. 211–18
    [Google Scholar]
  40. Poole K.. 2005; Efflux-mediated antimicrobial resistance. J Antimicrob Chemother56:20–51
    [Google Scholar]
  41. Rau M. H., Hansen S. K., Johansen H. K., Thomsen L. E., Workman C. T., Nielsen K. F., Jelsbak L., Høiby N., Yang L., Molin S.. 2010; Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol12:1643–1658
    [Google Scholar]
  42. Remold S. K., Lenski R. E.. 2001; Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli . Proc Natl Acad Sci U S A98:11388–11393
    [Google Scholar]
  43. Rosenfeld M., Davis R., FitzSimmons S., Pepe M., Ramsey B.. 1997; Gender gap in cystic fibrosis mortality. Am J Epidemiol145:794–803
    [Google Scholar]
  44. Rowen D. W., Deretic V.. 2000; Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol36:314–327
    [Google Scholar]
  45. Schoeffler A. J., Berger J. M.. 2005; Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism. Biochem Soc Trans33:1465–1470
    [Google Scholar]
  46. Shorr A. F.. 2009; Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med37:1463–1469
    [Google Scholar]
  47. Sissi C., Palumbo M.. 2010; In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci67:2001–2024
    [Google Scholar]
  48. Stephenson A.. 2008; Canadian Cystic Fibrosis Patient Data Registry Report 2008 Toronto: Canadian Cystic Fibrosis Foundation;
    [Google Scholar]
  49. Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A.. 2009; Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev22:664–689
    [Google Scholar]
  50. Tamae C., Liu A., Kim K., Sitz D., Hong J., Becket E., Bui A., Solaimani P., Tran K. P.. other authors 2008; Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli . J Bacteriol190:5981–5988
    [Google Scholar]
  51. Ward H., Perron G. G., Maclean R. C.. 2009; The cost of multiple drug resistance in Pseudomonas aeruginosa . J Evol Biol22:997–1003
    [Google Scholar]
  52. Winter J., Sweeney G.. 1991; Reproducibility of the measurement of ciprofloxacin concentration in bronchial mucosa. J Antimicrob Chemother27:329–333
    [Google Scholar]
  53. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K. C., Birrer P., Bellon G., Berger J.. other authors 2002; Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest109:317–325
    [Google Scholar]
  54. Zhang L., Mah T.-F.. 2008; Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol190:4447–4452
    [Google Scholar]
  55. Zhou J., Dong Y., Zhao X., Lee S., Amin A., Ramaswamy S., Domagala J., Musser J. M., Drlica K.. 2000; Selection of antibiotic-resistant bacterial mutants: allelic diversity among fluoroquinolone-resistant mutations. J Infect Dis182:517–525
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046870-0
Loading
/content/journal/micro/10.1099/mic.0.046870-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error