1887

Abstract

A sporulated lactic acid bacterium (LAB) isolated from cider must was shown to harbour the gene encoding tyrosine decarboxylase. The isolate belonged to the genus and may correspond to a novel species. The ability of the -positive strain, sp. strain P3J, to produce tyramine was demonstrated by using HPLC. A 7535 bp nucleotide sequence harbouring the putative gene was determined. Analysis of the obtained sequence showed that four tyramine production-associated genes [tyrosyl-tRNA synthetase (), tyrosine decarboxylase (), tyrosine permease () and Na/H antiporter ()] were present and were organized as already described in other tyramine-producing LAB. This operon was surrounded by genes showing the highest identities with mobile elements: a putative phage terminase and a putative transposase (downstream and upstream, respectively), suggesting that the tyramine-forming trait was acquired through horizontal gene transfer. Transcription analyses of the gene cluster suggested that and are expressed as monocistronic genes while would be part of a polycistronic mRNA together with . The presence of tyrosine in the culture medium induced the expression of all genes except for A clear correlation was observed between initial tyrosine concentration and tyramine production combined with an increase in the final pH reached by the culture. Finally, cloning and expression of the gene in demonstrated that its product catalyses the exchange of tyrosine and tyramine.

Funding
This study was supported by the:
  • European Community’s Seventh Framework Program (Award 211441)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.046367-0
2011-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1841.html?itemId=/content/journal/micro/10.1099/mic.0.046367-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Azcarate-Peril M. A., Altermann E., Hoover-Fitzula R. L., Cano R. J., Klaenhammer T. R. ( 2004). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol 70:5315–5322 [View Article][PubMed]
    [Google Scholar]
  3. Bae S., Fleet G. H., Heard G. M. ( 2006). Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727 [View Article][PubMed]
    [Google Scholar]
  4. Bover-Cid S., Torriani S., Gatto V., Tofalo R., Suzzi G., Belletti N., Gardini F. ( 2009). Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening. J Appl Microbiol 106:1397–1407 [View Article][PubMed]
    [Google Scholar]
  5. Burdychova R., Komprda T. ( 2007). Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett 276:149–155 [View Article][PubMed]
    [Google Scholar]
  6. Caston J. C., Eaton C. L., Gheorghiu B. P., Ware L. L. ( 2002). Tyramine induced hypertensive episodes and panic attacks in hereditary deficient monoamine oxidase patients: case reports. J S C Med Assoc 98:187–192[PubMed]
    [Google Scholar]
  7. Chang S. F., Ayres J. W., Sandine W. E. ( 1985). Analysis of cheese for histamine, tyramine, tryptamine, histidine, tyrosine, and tryptophane. J Dairy Sci 68:2840–2846 [View Article][PubMed]
    [Google Scholar]
  8. Chang Y. H., Jung M. Y., Park I. S., Oh H. M. ( 2008). Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 58:2316–2320 [View Article][PubMed]
    [Google Scholar]
  9. Chen Y. S., Yanagida F., Shinohara T. ( 2005). Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200 [View Article][PubMed]
    [Google Scholar]
  10. Cid S. B., Miguélez-Arrizado M. J., Becker B., Holzapfel W. H., Vidal-Carou M. C. ( 2008). Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiol 25:269–277 [View Article][PubMed]
    [Google Scholar]
  11. Connil N., Le Breton Y., Dousset X., Auffray Y., Rincé A., Prévost H. ( 2002). Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl Environ Microbiol 68:3537–3544 [View Article][PubMed]
    [Google Scholar]
  12. Coton E., Coton M. ( 2005). Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria. J Microbiol Methods 63:296–304 [View Article][PubMed]
    [Google Scholar]
  13. Coton E., Coton M. ( 2009). Evidence of horizontal transfer as origin of strain to strain variation of the tyramine production trait in Lactobacillus brevis . Food Microbiol 26:52–57 [View Article][PubMed]
    [Google Scholar]
  14. Coton M., Coton E., Lucas P., Lonvaud A. ( 2004). Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol 21:125–130 [View Article]
    [Google Scholar]
  15. Coton E., Mulder N., Coton M., Pochet S., Trip H., Lolkema J. S. ( 2010a). Origin of the putrescine-producing ability of the coagulase-negative bacterium Staphylococcus epidermidis 2015B. Appl Environ Microbiol 76:5570–5576 [View Article][PubMed]
    [Google Scholar]
  16. Coton M., Romano A., Spano G., Ziegler K., Vetrana C., Desmarais C., Lonvaud-Funel A., Lucas P., Coton E. ( 2010b). Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27:1078–1085 [View Article][PubMed]
    [Google Scholar]
  17. de Ruyter P. G., Kuipers O. P., de Vos W. M. ( 1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667[PubMed]
    [Google Scholar]
  18. Desroche N., Beltramo C., Guzzo J. ( 2005). Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni . J Microbiol Methods 60:325–333 [View Article][PubMed]
    [Google Scholar]
  19. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. ( 1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  20. Fernández M., Linares D. M., Alvarez M. A. ( 2004). Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J Food Prot 67:2521–2529[PubMed]
    [Google Scholar]
  21. Fritz G., Koller C., Burdack K., Tetsch L., Haneburger I., Jung K., Gerland U. ( 2009). Induction kinetics of a conditional pH stress response system in Escherichia coli. . J Mol Biol 393:272–286 [View Article][PubMed]
    [Google Scholar]
  22. Fujita R., Mochida K., Kato Y., Goto K. ( 2010). Sporolactobacillus putidus sp. nov., an endospore-forming lactic acid bacterium isolated from spoiled orange juice. Int J Syst Evol Microbiol 60:1499–1503 [View Article][PubMed]
    [Google Scholar]
  23. Garai G., Dueñas M. T., Irastorza A., Martín-Alvarez P. J., Moreno-Arribas M. V. ( 2006). Biogenic amines in natural ciders. J Food Prot 69:3006–3012[PubMed]
    [Google Scholar]
  24. Garai G., Dueñas M. T., Irastorza A., Moreno-Arribas M. V. ( 2007). Biogenic amine production by lactic acid bacteria isolated from cider. Lett Appl Microbiol 45:473–478 [View Article][PubMed]
    [Google Scholar]
  25. Iyer R., Williams C., Miller C. ( 2003). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli . J Bacteriol 185:6556–6561 [View Article][PubMed]
    [Google Scholar]
  26. Justé A., Lievens B., Frans I., Klingeberg M., Michiels C. W., Willems K. A. ( 2008). Present knowledge of the bacterial microflora in the extreme environment of sugar thick juice. Food Microbiol 25:831–836 [View Article][PubMed]
    [Google Scholar]
  27. Kashiwagi K., Shibuya S., Tomitori H., Kuraishi A., Igarashi K. ( 1997). Excretion and uptake of putrescine by the PotE protein in Escherichia coli . J Biol Chem 272:6318–6323 [View Article][PubMed]
    [Google Scholar]
  28. Kitahara K., Suzuki J. ( 1963). Sporolactobacillus nov. subgen. J Gen Appl Microbiol 9:59–71 [View Article]
    [Google Scholar]
  29. Krause I., Bockhardt A., Neckermann H., Henle T., Klostermeyer H. ( 1995). Simultaneous determination of amino acids and biogenic amines by reversed-phase high-performance liquid chromatography of the dabsyl derivatives. J Chromatogr 715:67–79 [View Article]
    [Google Scholar]
  30. Kunji E. R., Mierau I., Hagting A., Poolman B., Konings W. N. ( 1996). The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70:187–221 [View Article][PubMed]
    [Google Scholar]
  31. Ladero V., Calles-Enriquez M., Fernández M., Alvarez M. A. ( 2010). Toxicological effects of dietary biogenic amines. Curr Nut Food Sci 6:145–156 [View Article]
    [Google Scholar]
  32. Linares D. M., Fernández M., Martín M. C., Alvarez M. A. ( 2009). Tyramine biosynthesis in Enterococcus durans is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microb Biotechnol 2:625–633 [View Article][PubMed]
    [Google Scholar]
  33. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−Δ Δ CT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  34. Lonvaud-Funel A. ( 2001). Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199:9–13 [View Article][PubMed]
    [Google Scholar]
  35. Lucas P., Landete J., Coton M., Coton E., Lonvaud-Funel A. ( 2003). The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett 229:65–71 [View Article][PubMed]
    [Google Scholar]
  36. Lucas P. M., Wolken W. A., Claisse O., Lolkema J. S., Lonvaud-Funel A. ( 2005). Histamine-producing pathway encoded on an unstable plasmid in Lactobacillus hilgardii 0006. Appl Environ Microbiol 71:1417–1424 [View Article][PubMed]
    [Google Scholar]
  37. Marcobal A., de las Rivas B., Moreno-Arribas M. V., Muñoz R. ( 2006). Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Appl Environ Microbiol 72:7954–7958 [View Article][PubMed]
    [Google Scholar]
  38. Molenaar D., Bosscher J. S., ten Brink B., Driessen A. J., Konings W. N. ( 1993). Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri . J Bacteriol 175:2864–2870[PubMed]
    [Google Scholar]
  39. Moon J. S., Cho S. K., Choi H. Y., Kim J. E., Kim S. Y., Cho K. J., Han N. S. ( 2010). Isolation and characterization of biogenic amine-producing bacteria in fermented soybean pastes. J Microbiol 48:257–261 [View Article][PubMed]
    [Google Scholar]
  40. Pereira C. I., San Romão M. V., Lolkema J. S., Crespo M. T. ( 2009). Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine. J Appl Microbiol 107:1894–1902 [View Article][PubMed]
    [Google Scholar]
  41. Sarkar G., Turner R. T., Bolander M. E. ( 1993). Restriction-site PCR: a direct method of unknown sequence retrieval adjacent to a known locus by using universal primers. PCR Methods Appl 2:318–322[PubMed] [CrossRef]
    [Google Scholar]
  42. Satomi M., Furushita M., Oikawa H., Yoshikawa-Takahashi M., Yano Y. ( 2008). Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce. Int J Food Microbiol 126:202–209 [View Article][PubMed]
    [Google Scholar]
  43. Soksawatmaekhin W., Kuraishi A., Sakata K., Kashiwagi K., Igarashi K. ( 2004). Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli . Mol Microbiol 51:1401–1412 [View Article][PubMed]
    [Google Scholar]
  44. Suzzi G., Gardini F. ( 2003). Biogenic amines in dry fermented sausages: a review. Int J Food Microbiol 88:41–54 [View Article][PubMed]
    [Google Scholar]
  45. ten Brink B., Damink C., Joosten H. M., Huis in ’t Veld J. H. ( 1990). Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:73–84 [View Article][PubMed]
    [Google Scholar]
  46. Wallace H. M. ( 2007). Health Implications of Dietary Amines: an overview of COST Action 922 (2001–2006). Biochem Soc Trans 35:293–294 [View Article][PubMed]
    [Google Scholar]
  47. Wolken W. A., Lucas P. M., Lonvaud-Funel A., Lolkema J. S. ( 2006). The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis . J Bacteriol 188:2198–2206 [View Article][PubMed]
    [Google Scholar]
  48. Yanagida F., Suzuki K. I., Kozaki M., Komagata K. ( 1997). Proposal of Sporolactobacillus nakayamae subsp. nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp. nov. Int J Syst Bacteriol 47:499–504 [View Article]
    [Google Scholar]
  49. Yanagida F., Chen Y. S., Shinohara T. ( 2005). Isolation and characterization of lactic acid bacteria from soils in vineyards. J Gen Appl Microbiol 51:313–318 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.046367-0
Loading
/content/journal/micro/10.1099/mic.0.046367-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error