1887

Abstract

is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by . To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045591-0
2011-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/473.html?itemId=/content/journal/micro/10.1099/mic.0.045591-0&mimeType=html&fmt=ahah

References

  1. Catrein, I., Dumke, R., Weiner, J., III, Jacobs, E. & Herrmann, R. ( 2004; ). Cross-complementation between the products of the genes P1 and ORF6 of Mycoplasma pneumoniae subtypes 1 and 2. Microbiology 150, 3989–4000.[CrossRef]
    [Google Scholar]
  2. Catrein, I., Herrmann, R., Bosserhoff, A. & Ruppert, T. ( 2005; ). Experimental proof for a signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene encoding a conserved bacterial type I SPase. FEBS J 272, 2892–2900.[CrossRef]
    [Google Scholar]
  3. Dandekar, T., Huynen, M., Regula, J. T., Ueberle, B., Zimmermann, C. U., Andrade, M. A., Doerks, T., Sanchez-Pulido, L., Snel, B. & other authors ( 2000; ). Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28, 3278–3288.[CrossRef]
    [Google Scholar]
  4. Dorigo-Zetsma, J. W., Wilbrink, B., Dankert, J. & Zaat, S. A. ( 2001; ). Mycoplasma pneumoniae P1 type 1- and type 2-specific sequences within the P1 cytadhesin gene of individual strains. Infect Immun 69, 5612–5618.[CrossRef]
    [Google Scholar]
  5. Dumke, R., Catrein, I., Pirkil, E., Herrmann, R. & Jacobs, E. ( 2003; ). Subtyping of Mycoplasma pneumoniae isolates based on extended genome sequencing and on expression profiles. Int J Med Microbiol 292, 513–525.[CrossRef]
    [Google Scholar]
  6. Dumke, R., Luck, P. C., Noppen, C., Schaefer, C., von Baum, H., Marre, R. & Jacobs, E. ( 2006; ). Culture-independent molecular subtyping of Mycoplasma pneumoniae in clinical samples. J Clin Microbiol 44, 2567–2570.[CrossRef]
    [Google Scholar]
  7. Franzoso, G., Hu, P. C., Meloni, G. A. & Barile, M. F. ( 1993; ). The immunodominant 90-kilodalton protein is localized on the terminal tip structure of Mycoplasma pneumoniae. Infect Immun 61, 1523–1530.
    [Google Scholar]
  8. Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B. C. & Herrmann, R. ( 1996; ). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24, 4420–4449.[CrossRef]
    [Google Scholar]
  9. Hu, P. C., Huang, C. H., Collier, A. M. & Clyde, W. A., Jr ( 1983; ). Demonstration of antibodies to Mycoplasma pneumoniae attachment protein in human sera and respiratory secretions. Infect Immun 41, 437–439.
    [Google Scholar]
  10. Kenri, T., Taniguchi, R., Sasaki, Y., Okazaki, N., Narita, M., Izumikawa, K., Umetsu, M. & Sasaki, T. ( 1999; ). Identification of a new variable sequence in the P1 cytadhesin gene of Mycoplasma pneumoniae: evidence for the generation of antigenic variation by DNA recombination between repetitive sequences. Infect Immun 67, 4557–4562.
    [Google Scholar]
  11. Krause, D. C., Leith, D. K., Wilson, R. M. & Baseman, J. B. ( 1982; ). Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 35, 809–817.
    [Google Scholar]
  12. Layh-Schmitt, G. & Harkenthal, M. ( 1999; ). The 40- and 90-kDa membrane proteins (ORF6 gene product) of Mycoplasma pneumoniae are responsible for the tip structure formation and P1 (adhesin) association with the Triton shell. FEMS Microbiol Lett 174, 143–149.[CrossRef]
    [Google Scholar]
  13. Layh-Schmitt, G. & Herrmann, R. ( 1992; ). Localization and biochemical characterization of the ORF6 gene product of the Mycoplasma pneumoniae P1 operon. Infect Immun 60, 2906–2913.
    [Google Scholar]
  14. Layh-Schmitt, G. & Herrmann, R. ( 1994; ). Spatial arrangement of gene products of the P1 operon in the membrane of Mycoplasma pneumoniae. Infect Immun 62, 974–979.
    [Google Scholar]
  15. Leith, D. K., Trevino, L. B., Tully, J. G., Senterfit, L. B. & Baseman, J. B. ( 1983; ). Host discrimination of Mycoplasma pneumoniae proteinaceous immunogens. J Exp Med 157, 502–514.[CrossRef]
    [Google Scholar]
  16. Maquelin, K., Hoogenboezem, T., Jachtenberg, J. W., Dumke, R., Jacobs, E., Puppels, G. J., Hartwig, N. G. & Vink, C. ( 2009; ). Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumoniae. Microbiology 155, 2068–2077.[CrossRef]
    [Google Scholar]
  17. Pereyre, S., Charron, A., Renaudin, H., Bebear, C. & Bebear, C. M. ( 2007; ). First report of macrolide-resistant strains and description of a novel nucleotide sequence variation in the P1 adhesin gene in Mycoplasma pneumoniae clinical strains isolated in France over 12 years. J Clin Microbiol 45, 3534–3539.[CrossRef]
    [Google Scholar]
  18. Rocha, E. P. & Blanchard, A. ( 2002; ). Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 30, 2031–2042.[CrossRef]
    [Google Scholar]
  19. Ruland, K., Wenzel, R. & Herrmann, R. ( 1990; ). Analysis of three different repeated DNA elements present in the P1 operon of Mycoplasma pneumoniae: size, number and distribution on the genome. Nucleic Acids Res 18, 6311–6317.[CrossRef]
    [Google Scholar]
  20. Ruland, K., Himmelreich, R. & Herrmann, R. ( 1994; ). Sequence divergence in the ORF6 gene of Mycoplasma pneumonia. J Bacteriol 176, 5202–5209.
    [Google Scholar]
  21. Seto, S., Kenri, T., Tomiyama, T. & Miyata, M. ( 2005; ). Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions. J Bacteriol 187, 1875–1877.[CrossRef]
    [Google Scholar]
  22. Sluijter, M., Kaptein, E., Spuesens, E. B., Hoogenboezem, T., Hartwig, N. G., Van Rossum, A. M. & Vink, C. ( 2010; ). The Mycoplasma genitalium MG352-encoded protein is a Holliday junction resolvase that has a non-functional orthologue in Mycoplasma pneumoniae. Mol Microbiol 77, 1261–1277.[CrossRef]
    [Google Scholar]
  23. Sperker, B., Hu, P. & Herrmann, R. ( 1991; ). Identification of gene products of the P1 operon of Mycoplasma pneumoniae. Mol Microbiol 5, 299–306.[CrossRef]
    [Google Scholar]
  24. Spuesens, E. B., Oduber, M., Hoogenboezem, T., Sluijter, M., Hartwig, N. G., van Rossum, A. M. & Vink, C. ( 2009; ). Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae. Microbiology 155, 2182–2196.[CrossRef]
    [Google Scholar]
  25. Spuesens, E. B., Hartwig, N. G., van Rossum, A. M. & Vink, C. ( 2010a; ). Identification and classification of P1 variants of Mycoplasma pneumoniae. J Clin Microbiol 48, 680.[CrossRef]
    [Google Scholar]
  26. Spuesens, E. B., Hoogenboezem, T., Sluijter, M., Hartwig, N. G., van Rossum, A. M. & Vink, C. ( 2010b; ). Macrolide resistance determination and molecular typing of Mycoplasma pneumoniae by pyrosequencing. J Microbiol Methods 82, 214–222.[CrossRef]
    [Google Scholar]
  27. Waites, K. B. & Talkington, D. F. ( 2004; ). Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17, 697–728.[CrossRef]
    [Google Scholar]
  28. Waldo, R. H., III & Krause, D. C. ( 2006; ). Synthesis, stability, and function of cytadhesin P1 and accessory protein B/C complex of Mycoplasma pneumoniae. J Bacteriol 188, 569–575.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045591-0
Loading
/content/journal/micro/10.1099/mic.0.045591-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 473 - 483

[PDF](33 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error