1887

Abstract

Horizontal genetic exchange strongly influences the evolution of many bacteria, substantially contributing to difficulties in defining their position in taxonomic groups. In particular, how clusters of related bacterial genotypes – currently classified as microbiological species – evolve and are maintained remains controversial. The nature and magnitude of gene exchange between two closely related (approx. 15 % nucleotide divergence) microbiologically defined species, and , was investigated by the examination of mosaic alleles, those with some ancestry from each population. A total of 1738 alleles from 2953 seven-locus housekeeping gene sequence types (STs) were probabilistically assigned to each species group with the model-based clustering algorithm . Alleles with less than 75 % assignment probability to one of the populations were confirmed as mosaics using the linkage model. For each of these, the putative source of the recombinant region was determined and the allele was mapped onto a genealogy derived from concatenated ST sequences. This enabled the direction and frequency of introgression between the two populations to be established, with 8.3 % of clade 1 alleles having acquired sequence, compared to 0.5 % for the reciprocal process. Once generated, mosaic genes spread within clade 1 by a combination of clonal expansion and lateral gene transfer, with some evidence of erosion of the mosaics by reacquisition of sequence. These observations confirm previous analyses of the exchange of complete housekeeping alleles and extend this work by describing the processes of horizontal gene transfer and subsequent spread within recipient species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045153-0
2011-04-01
2020-03-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1066.html?itemId=/content/journal/micro/10.1099/mic.0.045153-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  2. Baltrus D. A., Guillemin K., Phillips P. C.. 2008; Natural transformation increases the rate of adaptation in the human pathogen Helicobacter pylori . Evolution62:39–49
    [Google Scholar]
  3. Bentley S. D., Parkhill J.. 2004; Comparative genomic structure of prokaryotes. Annu Rev Genet38:771–791
    [Google Scholar]
  4. Brückner R., Nuhn M., Reichmann P., Weber B., Hakenbeck R.. 2004; Mosaic genes and mosaic chromosomes-genomic variation in Streptococcus pneumoniae . Int J Med Microbiol294:157–168
    [Google Scholar]
  5. Caro-Quintero A., Rodriguez-Castaño G. P., Konstantinidis K. T.. 2009; Genomic insights into the convergence and pathogenicity factors of Campylobacter jejuni and Campylobacter coli species. J Bacteriol191:5824–5831
    [Google Scholar]
  6. Charlesworth J., Eyre-Walker A.. 2006; The rate of adaptive evolution in enteric bacteria. Mol Biol Evol23:1348–1356
    [Google Scholar]
  7. Coffey T. J., Daniels M., McDougal L. K., Dowson C. G., Tenover F. C., Spratt B. G.. 1995; Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother39:1306–1313
    [Google Scholar]
  8. Cohan F. M., Koeppel A. F.. 2008; The origins of ecological diversity in prokaryotes. Curr Biol18:R1024–R1034
    [Google Scholar]
  9. Cooper T. F.. 2007; Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli . PLoS Biol5:e225
    [Google Scholar]
  10. Didelot X., Falush D.. 2007; Inference of bacterial microevolution using multilocus sequence data. Genetics175:1251–1266
    [Google Scholar]
  11. Didelot X., Maiden M. C.. 2010; Impact of recombination on bacterial evolution. Trends Microbiol18:315–322
    [Google Scholar]
  12. Dingle K. E., Colles F. M., Wareing D. R. A., Ure R., Fox A. J., Bolton F. E., Bootsma H. J., Willems R. J., Urwin R., Maiden M. C.. 2001; Multilocus sequence typing system for Campylobacter jejuni . J Clin Microbiol39:14–23
    [Google Scholar]
  13. Dingle K. E., Colles F. M., Falush D., Maiden M. C.. 2005; Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni . J Clin Microbiol43:340–347
    [Google Scholar]
  14. Doolittle W. F.. 2008; Microbial evolution: stalking the wild bacterial species. Curr Biol18:R565–R567
    [Google Scholar]
  15. Dowson C. G., Hutchison A., Woodford N., Johnson A. P., George R. C., Spratt B. G.. 1990; Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae . Proc Natl Acad Sci U S A87:5858–5862
    [Google Scholar]
  16. Excoffier L., Laval G., Schneider S.. 2005; Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online1:47–50
    [Google Scholar]
  17. Falush D., Kraft C., Taylor N. S., Correa P., Fox J. G., Achtman M., Suerbaum S.. 2001; Recombination and mutation during long-term gastric colonization by Helicobacter pylori : estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A98:15056–15061
    [Google Scholar]
  18. Falush D., Stephens M., Pritchard J. K.. 2003; Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics164:1567–1587
    [Google Scholar]
  19. Feil E. J., Spratt B. G.. 2001; Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol55:561–590
    [Google Scholar]
  20. Feil E., Carpenter G., Spratt B. G.. 1995; Electrophoretic variation in adenylate kinase of Neisseria meningitidis is due to inter- and intraspecies recombination. Proc Natl Acad Sci U S A92:10535–10539
    [Google Scholar]
  21. Fraser C., Hanage W. P., Spratt B. G.. 2007; Recombination and the nature of bacterial speciation. Science315:476–480
    [Google Scholar]
  22. Fraser C., Alm E. J., Polz M. F., Spratt B. G., Hanage W. P.. 2009; The bacterial species challenge: making sense of genetic and ecological diversity. Science323:741–746
    [Google Scholar]
  23. Friis C., Wassenaar T. M., Javed M. A., Snipen L., Lagesen K., Hallin P. F., Newell D. G., Toszeghy M., Ridley A.. other authors 2010; Genomic characterization of Campylobacter jejuni strain M1. PLoS ONE5:e12253
    [Google Scholar]
  24. Gutacker M. M., Mathema B., Soini H., Shashkina E., Kreiswirth B. N., Graviss E. A., Musser J. M.. 2006; Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis193:121–128
    [Google Scholar]
  25. Hakenbeck R.. 1998; Mosaic genes and their role in penicillin-resistant Streptococcus pneumoniae . Electrophoresis19:597–601
    [Google Scholar]
  26. Halter R., Pohlner J., Meyer T. F.. 1989; Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo . EMBO J8:2737–2744
    [Google Scholar]
  27. Hanage W. P., Fraser C., Spratt B. G.. 2005; Fuzzy species among recombinogenic bacteria. BMC Biol3:6
    [Google Scholar]
  28. Hanage W. P., Spratt B. G., Turner K. M., Fraser C.. 2006; Modelling bacterial speciation. Philos Trans R Soc Lond B Biol Sci361:2039–2044
    [Google Scholar]
  29. Hollingshead S. K., Becker R., Briles D. E.. 2000; Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae . Infect Immun68:5889–5900
    [Google Scholar]
  30. Jolley K. A., Feil E. J., Chan M. S., Maiden M. C.. 2001; Sequence type analysis and recombinational tests (START. Bioinformatics17:1230–1231
    [Google Scholar]
  31. Jolley K. A., Chan M. S., Maiden M. C.. 2004; mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics5:86
    [Google Scholar]
  32. Kapur V., Kanjilal S., Hamrick M. R., Li L.-L., Whittam T. S., Sawyer S. A., Musser J. M.. 1995; Molecular population genetic analysis of the streptokinase gene of Streptococcus pyogenes : mosaic alleles generated by recombination. Mol Microbiol16:509–519
    [Google Scholar]
  33. Kidgell C., Reichard U., Wain J., Linz B., Torpdahl M., Dougan G., Achtman M.. 2002; Salmonella typhi , the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol2:39–45
    [Google Scholar]
  34. Kulick S., Moccia C., Didelot X., Falush D., Kraft C., Suerbaum S.. 2008; Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori . PLoS ONE3:e3797
    [Google Scholar]
  35. Kumar S., Tamura K., Nei M.. 2004; MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform5:150–163
    [Google Scholar]
  36. Lawrence J. G.. 1999; Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol2:519–523
    [Google Scholar]
  37. Lawrence J. G.. 2002; Gene transfer in bacteria: speciation without species?. Theor Popul Biol61:449–460
    [Google Scholar]
  38. Lederberg J., Tatum E. L.. 1946; Gene recombination in Escherichia coli . Nature158:558
    [Google Scholar]
  39. Lefébure T., Stanhope M. J.. 2009; Pervasive, genome-wide positive selection leading to functional divergence in the bacterial genus Campylobacter . Genome Res19:1224–1232
    [Google Scholar]
  40. Lorenz M. G., Wackernagel W.. 1994; Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev58:563–602
    [Google Scholar]
  41. Maiden M. C.. 2006; Multilocus sequence typing of bacteria. Annu Rev Microbiol60:561–588
    [Google Scholar]
  42. Maiden M. C. J., Malorny B., Achtman M.. 1996; A global gene pool in the Neisseriae . Mol Microbiol21:1297–1298
    [Google Scholar]
  43. Maynard Smith J.. 1992; Analyzing the mosaic structure of genes. J Mol Evol34:126–129
    [Google Scholar]
  44. Maynard Smith J., Dowson C. G., Spratt B. G.. 1991; Localized sex in bacteria. Nature349:29–31
    [Google Scholar]
  45. Maynard Smith J., Feil E. J., Smith N. H.. 2000; Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays22:1115–1122
    [Google Scholar]
  46. Milkman R., Stoltzfus A.. 1988; Molecular evolution of the Escherichia coli chromosome. II. Clonal segments. Genetics120:359–366
    [Google Scholar]
  47. Ochman H., Groisman E. A.. 1994; The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium . EXS69:479–493
    [Google Scholar]
  48. Ochman H., Lawrence J. G., Groisman E. A.. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature405:299–304
    [Google Scholar]
  49. Pritchard J. K., Stephens M., Donnelly P.. 2000; Inference of population structure using multilocus genotype data. Genetics155:945–959
    [Google Scholar]
  50. Rozas J., Sánchez-DelBarrio J. C., Messeguer X., Rozas R.. 2003; DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics19:2496–2497
    [Google Scholar]
  51. Sheppard S. K., McCarthy N. D., Falush D., Maiden M. C.. 2008; Convergence of Campylobacter species: implications for bacterial evolution. Science320:237–239
    [Google Scholar]
  52. Sheppard S. K., Dallas J. F., Strachan N. J., MacRae M., McCarthy N. D., Wilson D. J., Gormley F. J., Falush D., Ogden I. D.. other authors 2009; Campylobacter genotyping to determine the source of human infection. Clin Infect Dis48:1072–1078
    [Google Scholar]
  53. Snyder L. A., McGowan S., Rogers M., Duro E., O'Farrell E., Saunders N. J.. 2007; The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria. Mol Biol Evol24:2802–2815
    [Google Scholar]
  54. Spratt B. G.. 1988; Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae . Nature332:173–176
    [Google Scholar]
  55. Spratt B. G., Dowson C. G., Zhang Q.-Y., Bowler L. D., Brannigan J. A., Hutchison A.. 1991; Mosaic genes, hybrid penicillin-binding proteins, and the origins of penicillin resistance in Neisseria meningitidis and Streptococcus pneumoniae . In Perspectives on cellular regulation: from bacteria to cancer pp73–83 Edited by Campisi J.. other authors New York: Wiley-Liss, Inc;
    [Google Scholar]
  56. Spratt B. G., Hanage W. P., Feil E. J.. 2001; The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol4:602–606
    [Google Scholar]
  57. Stoltzfus A., Leslie J. F., Milkman R.. 1988; Molecular evolution of the Escherichia coli chromosome. I. Analysis of structure and natural variation in a previously uncharacterized region between trp and tonB . Genetics120:345–358
    [Google Scholar]
  58. Wilson D. J., Gabriel E., Leatherbarrow A. J., Cheesbrough J., Gee S., Bolton E., Fox A., Hart C. A., Diggle P. J., Fearnhead P.. 2009; Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni . Mol Biol Evol26:385–397
    [Google Scholar]
  59. Zhou J., Spratt B. G.. 1992; Sequence diversity within the argF , fbp and recA genes of natural isolates of Neisseria meningitidis : interspecies recombination within the argF gene. Mol Microbiol6:2135–2146
    [Google Scholar]
  60. Zhou J., Bowler L. D., Spratt B. G.. 1997; Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol23:799–812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045153-0
Loading
/content/journal/micro/10.1099/mic.0.045153-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error