1887

Abstract

The cloned gene of the marine bacterium allows to form the volatile dimethyl sulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant anti-stress compatible solute made by many marine plankton and macroalgae. Using purified DddP, we show here that this enzyme is a DMSP lyase that cleaves DMSP to DMS plus acrylate. DddP forms a functional homodimeric enzyme, has a pH optimum of 6.0 and was a of ∼14 mM for the DMSP substrate. DddP belongs to the M24B family of peptidases, some members of which have metal cofactors. However, the metal chelators EDTA and bipyridyl did not affect DddP activity and the as-isolated enzyme did not contain metal ions. Thus, DddP resembles those members of the M24B family, such as creatinase, which also act on a non-peptide substrate and have no metal cofactor. Site-directed mutagenesis of the active-site region of DddP completely abolished its activity. Another enzyme, termed DddL, which occurs in other alphaproteobacteria, had also been shown to generate DMS plus acrylate from DMSP. However, DddL and DddP have no sequence similarity to each other, so DddP represents a second, wholly different class of DMSP lyase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038927-0
2010-06-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1900.html?itemId=/content/journal/micro/10.1099/mic.0.038927-0&mimeType=html&fmt=ahah

References

  1. Bazan J. F., Weaver L. H., Roderick S. L., Huber R., Matthews B. W.. 1994; Sequence and structure comparison suggest that methionine aminopeptidase, prolidase aminopeptidase P and creatinase share a common fold. Proc Natl Acad Sci U S A91:2473–2477
    [Google Scholar]
  2. Cantoni G. L., Anderson D. G.. 1956; Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem222:171–177
    [Google Scholar]
  3. Curson A. R. J., Rogers R., Todd J. D., Brearley C. A., Johnston A. W. B.. 2008; Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol10:757–767
    [Google Scholar]
  4. Curson A. R. J., Sullivan M. J., Todd J. D., Johnston A. W. B.. 2010; Identification of genes for dimethyl sulfide production in bacteria in the gut of Atlantic herring ( Clupea harengus. ISME J4:144–146
    [Google Scholar]
  5. DeBose J. L., Nevitt G. A.. 2008; The use of odors at different special scales: comparing birds with fish. J Chem Ecol34:867–881
    [Google Scholar]
  6. Demeler B.. 2005; UltraScan – a comprehensive data analysis software package for analytical ultracentrifugation experiments. In Analytical Ultracentrifugation: Techniques and Methods pp210–229 Edited by Scott D. J., Harding S. E., Rowe A. J. Cambridge, UK: Royal Society of Chemistry;
  7. Gill S. C., von Hippel P. H.. 1989; Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem182:319–326
    [Google Scholar]
  8. González J. M., Covert J. S., Whitman W. B., Henriksen J. B., Mayer F., Scharf B., Schmitt R., Buchan A., Fuhrman J. A.. other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol53:1261–1269
    [Google Scholar]
  9. Graham S. C., Bond C. S., Freeman H. C., Guss J. M.. 2005; Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center. Biochemistry44:13820–13836
    [Google Scholar]
  10. Hong S.-B., Hwang I., Dessaux Y., Guyon P., Kim K.-S., Farrand S. K.. 1997; A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. J Bacteriol179:4831–4840
    [Google Scholar]
  11. Howard E. C., Henriksen J. R., Buchan A., Reisch C. R., Bürgmann H., Welsh R., Ye W., González J. M., Mace K.. other authors 2006; Bacterial taxa that limit sulfur flux from the ocean. Science314:649–652
    [Google Scholar]
  12. Howard E. C., Sun S., Biers E. J., Moran M. A.. 2008; Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol10:2397–2410
    [Google Scholar]
  13. Kirkwood M., Todd J. D., Rypien K. L., Johnston A. W. B.. 2010; The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J4:147–150
    [Google Scholar]
  14. Maher M. J., Ghosh M., Grunden A. M., Menon A. L., Adams M. W., Freeman H. C., Guss J. M.. 2004; Structure of the prolidase from Pyrococcus furiosus. Biochemistry43:2771–2783
    [Google Scholar]
  15. Miroux B., Walker J. E.. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol260:289–298
    [Google Scholar]
  16. Padmanabhan B., Paehler A., Horikoshi M.. 2002; Structure of creatine amidinohydrolase from Actinobacillus. Acta Crystallogr D Biol Crystallogr58:1322–1328
    [Google Scholar]
  17. Philo J. S.. 1997; An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys J72:435–444
    [Google Scholar]
  18. Raina J.-B., Dinsdale E. A., Willis B. L., Bourne D. G.. 2010; Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends Microbiol18:101–108
    [Google Scholar]
  19. Rawlings N. D., Barrett A. J., Bateman A.. 2010; MEROPS: the peptidase data base. Nucleic Acids Res38:D227–D233
    [Google Scholar]
  20. Reisch C. R., Moran M. A., Whitman W. B.. 2008; Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol190:8018–8024
    [Google Scholar]
  21. Roderick S. L., Matthews B. W.. 1993; Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry32:3907–3912
    [Google Scholar]
  22. Rusch D. B., Halpern A. L., Sutton G., Heidelberg K. B., Williamson S., Yooseph S., Wu D., Eisen J. A., Hoffman J. M.. other authors 2007; The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol5:e77
    [Google Scholar]
  23. Schumann J., Böhm G., Schumacher G., Rudolph R., Jaenicke R.. 1993; Stabilization of creatinase from Pseudomonas putida by random mutagenesis. Protein Sci2:1612–1620
    [Google Scholar]
  24. Sievert S. M., Kiene R. P., Schulz-Vogt H. N.. 2007; The sulfur cycle. Oceanography20:117–123
    [Google Scholar]
  25. Simo R.. 2001; Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol16:287–294
    [Google Scholar]
  26. Stefels J.. 2000; Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res43:183–197
    [Google Scholar]
  27. Steinke M., Wolfe G. V., Kirst G. O.. 1998; Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar Ecol Prog Ser175:215–225
    [Google Scholar]
  28. Todd J. D., Rogers R., Li Y. G., Wexler M., Bond P. L., Sun L., Curson A. R. J., Malin G., Steinke M., Johnston A. W. B.. 2007; Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science315:666–669
    [Google Scholar]
  29. Todd J. D., Curson A. R. J., Dupont C. L., Nicholson P., Johnston A. W. B.. 2009a; The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol11:1376–1385
    [Google Scholar]
  30. Todd J. D., Curson A. R. J., Nikolaidou-Katsaridou N., Brearley C. A., Watmough N. J., Chan Y., Page P. C. B., Sun L., Johnston A. W. B.. 2009b; Molecular dissection of bacterial acrylate catabolism – unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol12:327–343
    [Google Scholar]
  31. Wang Y., Ma X., Zhao W., Jia X., Kai L., Xu X.. 2006; Study on the creatinase from Paracoccus sp. strain WB1. Process Biochem41:2072–2077
    [Google Scholar]
  32. Wexler M., Yeoman K. H., Stevens J. B., de Luca N. G., Sawers G., Johnston A. W. B.. 2001; The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Mol Microbiol41:801–816
    [Google Scholar]
  33. Yoch D. C.. 2002; Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol68:5804–5815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038927-0
Loading
/content/journal/micro/10.1099/mic.0.038927-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error