1887

Abstract

The importance of serine/threonine phosphorylation in signalling and regulation of gene expression in prokaryotes has been widely recognized. Driven by our interest in StkP (the pneumococcal serine/threonine kinase homologue) for vaccine development, we studied its cellular localization. We found that the C-terminally located PASTA (penicillin-binding protein and serine/threonine kinase associated) domains, but not the N-terminal kinase domain of StkP, were located on the surface of live pneumococcal cells grown and were also accessible to antibodies during pneumococcal infection in mice and man. Most importantly, we discovered, by immunofluorescence microscopy, that StkP co-localized with the cell division apparatus. StkP and FtsZ, the prokaryotic tubulin homologue, co-localized at mid-cell in most cells. Formation and constriction of the ring-like structure of StkP followed the dynamic changes of FtsZ in dividing cells. This pattern resembles that of the ‘late’ divisome protein penicillin-binding protein 2X. The lack of StkP in gene deletion mutants did not disturb FtsZ ring formation, further suggesting that StkP joins the divisome after the FtsZ ring is assembled. We also present evidence that StkP binds and phosphorylates recombinant FtsZ ; however, we could not detect changes in the phosphorylation of FtsZ in a deletion strain relative to wild-type cells. Based on its cell-division-dependent localization and interaction with FtsZ, we propose that StkP plays a currently undefined role in cell division of pneumococcus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036335-0
2010-06-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1697.html?itemId=/content/journal/micro/10.1099/mic.0.036335-0&mimeType=html&fmt=ahah

References

  1. Av-Gay Y., Everett M.. 2000; The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol8:238–244
    [Google Scholar]
  2. CDC 2007; Pneumococcal disease. In Epidemiology and Prevention of Vaccine-Preventable Diseases – The Pink Book pp257–270 Edited by Atkinson H. J., McIntyre W. L., Wolfe S.. Washington, DC: Public Health Foundation;
  3. Chaba R., Raje M., Chakraborti P. K.. 2002; Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur J biochem269:1078–1085
    [Google Scholar]
  4. den Blaauwen T., de Pedro M. A., Nguyen-Disteche M., Ayala J. A.. 2008; Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev32:321–344
    [Google Scholar]
  5. Dryla A., Hoffmann B., Gelbmann D., Giefing C., Hanner M., Meinke A., Anderson A. S., Koppensteiner W., Konrat R.. other authors 2007; High-affinity binding of the staphylococcal HarA protein to haptoglobin and hemoglobin involves a domain with an antiparallel eight-stranded β-barrel fold. J Bacteriol189:254–264
    [Google Scholar]
  6. Echenique J., Kadioglu A., Romao S., Andrew P. W., Trombe M. C.. 2004; Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun72:2434–2437
    [Google Scholar]
  7. Errington J., Daniel R. A., Scheffers D. J.. 2003; Cytokinesis in bacteria. Microbiol Mol Biol Rev67:52–65
    [Google Scholar]
  8. Fadda D., Santona A., D'Ulisse V., Ghelardini P., Ennas M. G., Whalen M. B., Massidda O.. 2007; Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J Bacteriol189:1288–1298
    [Google Scholar]
  9. Giefing C., Meinke A. L., Hanner M., Henics T., Bui M. D., Gelbmann D., Lundberg U., Senn B. M., Schunn M.. other authors 2008; Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med205:117–131
    [Google Scholar]
  10. Goehring N. W., Beckwith J.. 2005; Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol15:R514–R526
    [Google Scholar]
  11. Inouye S., Jain R., Ueki T., Nariya H., Xu C. Y., Hsu M. Y., Fernandez-Luque B. A., Munoz-Dorado J., Farez-Vida E., Inouye M.. 2000; A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb Comp Genomics5:103–120
    [Google Scholar]
  12. Jin H., Pancholi V.. 2006; Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification. J Mol Biol357:1351–1372
    [Google Scholar]
  13. Jones G., Dyson P.. 2006; Evolution of transmembrane protein kinases implicated in coordinating remodeling of Gram-positive peptidoglycan: inside versus outside. J Bacteriol188:7470–7476
    [Google Scholar]
  14. Kang C. M., Abbott D. W., Park S. T., Dascher C. C., Cantley L. C., Husson R. N.. 2005; The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev19:1692–1704
    [Google Scholar]
  15. Kristich C. J., Wells C. L., Dunny G. M.. 2007; A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci U S A104:3508–3513
    [Google Scholar]
  16. Lara B., Rico A. I., Petruzzelli S., Santona A., Dumas J., Biton J., Vicente M., Mingorance J., Massidda O.. 2005; Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol55:699–711
    [Google Scholar]
  17. Le Gouellec A., Roux L., Fadda D., Massidda O., Vernet T., Zapun A.. 2008; Roles of pneumococcal DivIB in cell division. J Bacteriol190:4501–4511
    [Google Scholar]
  18. Mercer K. L., Weiss D. S.. 2002; The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol184:904–912
    [Google Scholar]
  19. Morlot C., Zapun A., Dideberg O., Vernet T.. 2003; Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol50:845–855
    [Google Scholar]
  20. Morlot C., Noirclerc-Savoye M., Zapun A., Dideberg O., Vernet T.. 2004; The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol51:1641–1648
    [Google Scholar]
  21. Noirclerc-Savoye M., Le Gouellec A., Morlot C., Dideberg O., Vernet T., Zapun A.. 2005; In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol Microbiol55:413–424
    [Google Scholar]
  22. Novakova L., Saskova L., Pallova P., Janecek J., Novotna J., Ulrych A., Echenique J., Trombe M. C., Branny P.. 2005; Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J272:1243–1254
    [Google Scholar]
  23. O'Brien K. L., Walters M. I., Sellman J., Quinlisk P., Regnery H., Schwartz B., Dowell S. F.. 2000; Severe pneumococcal pneumonia in previously healthy children: the role of preceding influenza infection. Clin Infect Dis30:784–789
    [Google Scholar]
  24. O'Brien K. L., Wolfson L. J., Watt J. P., Henkle E., Deloria-Knoll M., McCall N., Lee E., Mulholland K., Levine O. S.. other authors 2009; Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet374:893–902
    [Google Scholar]
  25. Osaki M., Arcondeguy T., Bastide A., Touriol C., Prats H., Trombe M. C.. 2009; The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. J Bacteriol191:4943–4950
    [Google Scholar]
  26. Pallova P., Hercik K., Saskova L., Novakova L., Branny P.. 2007; A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochem Biophys Res Commun355:526–530
    [Google Scholar]
  27. Peltola V. T., McCullers J. A.. 2004; Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr Infect Dis J23:S87–S97
    [Google Scholar]
  28. Petrickova K., Petricek M.. 2003; Eukaryotic-type protein kinases in Streptomyces coelicolor: variations on a common theme. Microbiology149:1609–1621
    [Google Scholar]
  29. Pinho M. G., Errington J.. 2005; Recruitment of penicillin-binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol Microbiol55:799–807
    [Google Scholar]
  30. Rabilloud T., Strub J. M., Luche S., van Dorsselaer A., Lunardi J.. 2001; A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics1:699–704
    [Google Scholar]
  31. Rajagopal L., Clancy A., Rubens C. E.. 2003; A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem278:14429–14441
    [Google Scholar]
  32. Saskova L., Novakova L., Basler M., Branny P.. 2007; Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol189:4168–4179
    [Google Scholar]
  33. Scheffers D. J., Pinho M. G.. 2005; Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev69:585–607
    [Google Scholar]
  34. Shah I. M., Laaberki M. H., Popham D. L., Dworkin J.. 2008; A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell135:486–496
    [Google Scholar]
  35. Shi L., Potts M., Kennelly P. J.. 1998; The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev22:229–253
    [Google Scholar]
  36. Silvestroni A., Jewell K. A., Lin W. J., Connelly J. E., Ivancic M. M., Tao W. A., Rajagopal L.. 2009; Identification of serine/threonine kinase substrates in the human pathogen group B streptococcus. J Proteome Res8:2563–2574
    [Google Scholar]
  37. Sonnhammer E. L., von Heijne G., Krogh A.. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol6:175–182
    [Google Scholar]
  38. Stock A. M., Robinson V. L., Goudreau P. N.. 2000; Two-component signal transduction. Annu Rev Biochem69:183–215
    [Google Scholar]
  39. Thakur M., Chakraborti P. K.. 2006; GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase. PknA. J Biol Chem281:40107–40113
    [Google Scholar]
  40. Wang L., Khattar M. K., Donachie W. D., Lutkenhaus J.. 1998; FtsI and FtsW are localized to the septum in Escherichia coli. J Bacteriol180:2810–2816
    [Google Scholar]
  41. Wang L., Sun Y. P., Chen W. L., Li J. H., Zhang C. C.. 2002; Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett217:155–165
    [Google Scholar]
  42. Yeats C., Finn R. D., Bateman A.. 2002; The PASTA domain: a β-lactam-binding domain. Trends Biochem Sci27:438
    [Google Scholar]
  43. Zapun A., Vernet T., Pinho M. G.. 2008; The different shapes of cocci. FEMS Microbiol Rev32:345–360
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036335-0
Loading
/content/journal/micro/10.1099/mic.0.036335-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error