1887

Abstract

Inducible promoter systems are powerful tools for studying gene function in prokaryotes but have never been shown to function in mollicutes. In this study we evaluated the efficacy of the tetracycline-inducible promoter P from in controlling gene expression in two mollicutes, the plant pathogen and the animal pathogen . An plasmid carrying the spiralin gene under the control of the tetracycline-inducible promoter and the TetR repressor gene under the control of a constitutive spiroplasmal promoter was introduced into the spiralin-less mutant GII3-9a3. In the absence of tetracycline, expression of TetR almost completely abolished expression of spiralin from the promoter. Adding tetracycline (>50 ng ml) to the medium induced high-level expression of spiralin. Interestingly, inducible expression of spiralin was also detected : in -infected leafhoppers fed on tetracycline-containing medium and in -infected plants watered with tetracycline. A similar construct was introduced into the chromosome through transposition. Tetracycline-induced expression of spiralin proved the TetR-P system to be functional in the ruminant pathogen, suggesting that this tetracycline-inducible promoter system might be of general use in mollicutes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034074-0
2010-01-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/198.html?itemId=/content/journal/micro/10.1099/mic.0.034074-0&mimeType=html&fmt=ahah

References

  1. André A., Maccheroni W., Doignon F., Garnier M., Renaudin J.. 2003; Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology149:2687–2696
    [Google Scholar]
  2. André A., Maucourt M., Moing A., Rolin D., Renaudin J.. 2005; Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. Mol Plant Microbe Interact18:33–42
    [Google Scholar]
  3. Bae T., Schneewind O.. 2006; Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid55:58–63
    [Google Scholar]
  4. Bergonier D., Berthelot X., Poumarat F.. 1997; Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control. Rev Sci Tech16:848–873
    [Google Scholar]
  5. Blokpoel M. C., Murphy H. N., O'Toole R., Wiles S., Runn E. S., Stewart G. R., Young D. B., Robertson B. D.. 2005; Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res33:e22
    [Google Scholar]
  6. Breton M., Duret S., Arricau-Bouvery N., Béven L., Renaudin J.. 2008; Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. Microbiology154:3232–3244
    [Google Scholar]
  7. Carroll P., Brown A. C., Hartridge A. R., Parish T.. 2007; Expression of Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter demonstrates its role as a toxin. FEMS Microbiol Lett274:73–82
    [Google Scholar]
  8. Chopra-Dewasthaly R., Marenda M., Rosengarten R. A., Jechlinger W., Citti C.. 2005a; Construction of the first shuttle vectors for gene cloning and homologous recombination in Mycoplasma agalactiae. FEMS Microbiol Lett253:89–94
    [Google Scholar]
  9. Chopra-Dewasthaly R., Zimmermann M., Rosengarten R., Citti C.. 2005b; First steps towards the genetic manipulation of Mycoplasma agalactiae and Mycoplasma bovis using the transposon Tn 4001mod. Int J Med Microbiol294:447–453
    [Google Scholar]
  10. Cordova C. M., Lartigue C., Sirand-Pugnet P., Renaudin J., Cunha R. A., Blanchard A.. 2002; Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol184:5426–5435
    [Google Scholar]
  11. Corrigan R. M., Foster T. J.. 2009; An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid61:126–129
    [Google Scholar]
  12. Corrigan R. M., Rigby D., Handley P., Foster T. J.. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology153:2435–2446
    [Google Scholar]
  13. Duret S., Danet J. L., Garnier M., Renaudin J.. 1999; Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol181:7449–7456
    [Google Scholar]
  14. Duret S., Berho N., Danet J. L., Garnier M., Renaudin J.. 2003; Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol69:6225–6234
    [Google Scholar]
  15. Duret S., André A., Renaudin J.. 2005; Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. Microbiology151:2793–2803
    [Google Scholar]
  16. Foissac X., Danet J. L., Saillard C., Whitcomb R. F., Bové J. M.. 1996; Experimental infections of plant by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmologyvol. 2 pp385–389 Edited by Razin S., Tully J. G.. New York: Academic Press;
  17. Foissac X., Danet J. L., Saillard C., Gaurivaud P., Laigret F., Pare C., Bové J. M.. 1997; Mutagenesis by insertion of Tn 4001 into the genome of Spiroplasma citri: characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps. Mol Plant Microbe Interact10:454–461
    [Google Scholar]
  18. Gaurivaud P., Danet J. L., Laigret F., Garnier M., Bové J. M.. 2000; Fructose utilization and phytopathogenicity of Spiroplasma citri. Mol Plant Microbe Interact13:1145–1155
    [Google Scholar]
  19. Gaurivaud P., Laigret F., Garnier M., Bové J. M.. 2001; Characterization of FruR as a putative activator of the fructose operon of Spiroplasma citri. FEMS Microbiol Lett198:73–78
    [Google Scholar]
  20. Geissendörfer M., Hillen W.. 1990; Regulated expression of heterologous genes in Bacillus subtilis using the Tn 10 encoded tet regulatory elements. Appl Microbiol Biotechnol33:657–663
    [Google Scholar]
  21. Halbedel S., Eilers H., Jonas B., Busse J., Hecker M., Engelmann S., Stulke J.. 2007; Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J Mol Biol371:596–607
    [Google Scholar]
  22. Jacob C., Nouzieres F., Duret S., Bové J. M., Renaudin J.. 1997; Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol179:4802–4810
    [Google Scholar]
  23. Janis C., Lartigue C., Frey J., Wroblewski H., Thiaucourt F., Blanchard A., Sirand-Pugnet P.. 2005; Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol71:2888–2893
    [Google Scholar]
  24. Janis C., Bischof D., Gourgues G., Frey J., Blanchard A., Sirand-Pugnet P.. 2008; Unmarked insertional mutagenesis in the bovine pathogen Mycoplasma mycoides subsp. mycoides SC: characterization of a lppQ mutant. Microbiology154:2427–2436
    [Google Scholar]
  25. Kamionka A., Bertram R., Hillen W.. 2005; Tetracycline-dependent conditional gene knockout in Bacillus subtilis. Appl Environ Microbiol71:728–733
    [Google Scholar]
  26. Killiny N., Castroviejo M., Saillard C.. 2005; Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology95:541–548
    [Google Scholar]
  27. Killiny N., Batailler B., Foissac X., Saillard C.. 2006; Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology152:1221–1230
    [Google Scholar]
  28. Lartigue C., Duret S., Garnier M., Renaudin J.. 2002; New plasmid vectors for specific gene targeting in Spiroplasma citri. Plasmid48:149–159
    [Google Scholar]
  29. Lartigue C., Blanchard A., Renaudin J., Thiaucourt F., Sirand-Pugnet P.. 2003; Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res31:6610–6618
    [Google Scholar]
  30. Lee S. W., Browning G. F., Markham P. F.. 2008; Development of a replicable oriC plasmid for Mycoplasma gallisepticum and Mycoplasma imitans, and gene disruption through homologous recombination in M. gallisepticum. Microbiology154:2571–2580
    [Google Scholar]
  31. Maniloff J.. 2002; Phylogeny and evolution. In Molecular Biology and Pathogenicity of Mycoplasmas pp31–43 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum;
  32. Musatovova O., Dhandayuthapani S., Baseman J. B.. 2006; Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol188:2845–2855
    [Google Scholar]
  33. Peterson S. N., Fraser C. M.. 2001; The complexity of simplicity. Genome Biol2: COMMENT2002
    [Google Scholar]
  34. Renaudin J.. 2002; Extrachromosomal elements and gene transfer. In Molecular and Pathogenicity of Mycoplasmas pp347–370 Edited by Razin S., Herrmann R.. New York: Kluwer Academic/Plenum;
  35. Renaudin J., Lartigue C.. 2005; oriC plasmids as gene vectors for mollicutes. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control pp3–30 Edited by Blanchard A., Browning G.. Norwich, UK: Horizon Scientific Press;
  36. Renaudin J., Marais A., Verdin E., Duret S., Foissac X., Laigret F., Bové J. M.. 1995; Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol177:2870–2877
    [Google Scholar]
  37. Rouch D. A., Byrne M. E., Kong Y. C., Skurray R. A.. 1987; The aacA-aphD gentamicin and kanamycin resistance determinant of Tn 4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol133:3039–3052
    [Google Scholar]
  38. Saglio P., Lhospital M., Laflèche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A.. 1973; Spiroplasma citri gen. and sp. nov.: a mycoplasma-like organism associated with stubborn disease of citrus. Int J Syst Bacteriol23:191–204
    [Google Scholar]
  39. Singh S. K., Aminuddin S. K., Srivastava P., Singh B. R., Khan J. A.. 2007; Production of phytoplasma-free plants from yellow leaf diseased Catharanthus roseus (L.) G. Don. J Plant Dis Prot114:2–5
    [Google Scholar]
  40. Sirand-Pugnet P., Lartigue C., Marenda M., Jacob D., Barré A., Barbe V., Schenowitz C., Mangenot S., Couloux A.. other authors 2007; Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial geome. PLoS Genet3:e75
    [Google Scholar]
  41. Stamburski C., Renaudin J., Bové J. M.. 1991; First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon – synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol173:2225–2230
    [Google Scholar]
  42. Vignault J. C., Bové J. M., Saillard C., Vogel R., Faro A., Venegas L., Stemmer W., Aoki S., McCoy R. E.. other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci Paris290:775–780
    [Google Scholar]
  43. Weiner J. III, Zimmerman C. U., Gohlmann H. W., Herrmann R.. 2003; Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res31:6306–6320
    [Google Scholar]
  44. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G.. other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol171:6455–6467
    [Google Scholar]
  45. Whitcomb R. F.. 1983; Culture media for spiroplasma. In Methods in Mycoplasmologyvol. I pp147–158 Edited by Razin S., Tully J. G. New York: Academic Press;
  46. Wongkaew P., Fletcher J.. 2004; Sugar cane white leaf phytoplasma in tissue culture: long-term maintenance, transmission, and oxytetracycline remission. Plant Cell Rep23:426–434
    [Google Scholar]
  47. Zhang L., Fan F., Palmer L. M., Lonetto M. A., Petit C., Voelker L. L., St John A., Bankosky B., Rosenberg M.. other authors 2000; Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene255:297–305
    [Google Scholar]
  48. Zimmerman C. U., Herrmann R.. 2005; Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae. FEMS Microbiol Lett253:315–321
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034074-0
Loading
/content/journal/micro/10.1099/mic.0.034074-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error