1887

Abstract

The Rcs phosphorelay is a signal transduction system that influences the virulence phenotype of several pathogenic bacteria. In the plant pathogen subsp. () the response regulator of the Rcs phosphorelay, RcsB, represses expression of plant cell wall degrading enzymes (PCWDE) and motility. The focus of this study was to identify genes directly regulated by the binding of RcsB that also regulate expression of PCWDE genes in . RcsB-binding sites within the regulatory regions of the operon and the and genes were identified using DNase I protection assays, while studies using  : : ,  : :  and  : :  gene fusions revealed gene regulation. These experiments demonstrated that the operon , a flagellar master regulator, was repressed by RcsB, and transcription of was activated by RcsB. Regulation of the promoter by RcsB is more complicated. Our results show that RcsB represses expression mainly through modulating transcription. Neverthless, direct binding of RcsB on the promoter region is possible in certain conditions. Using an -negative mutant, it was further demonstrated that RprA RNA is not essential for regulating expression of PCWDE under the conditions tested, whereas overexpression of increased protease expression in wild-type cells. Stationary-phase sigma factor, RpoS, is the only known target gene for RprA RNA in ; however, in the effect of RprA RNA was found to be -independent. Overall, our results show that the Rcs phosphorelay negatively affects expression of PCWDE by inhibiting expression of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033936-0
2010-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1323.html?itemId=/content/journal/micro/10.1099/mic.0.033936-0&mimeType=html&fmt=ahah

References

  1. Andersson, R. A., Kõiv, V., Norman-Setterblad, C. & Pirhonen, M. ( 1999; ). Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora. Microbiology 145, 3547–3556.
    [Google Scholar]
  2. Andresen, L., Kõiv, V., Alamäe, T. & Mäe, A. ( 2007; ). The Rcs phosphorelay modulates the expression of plant cell wall degrading enzymes and virulence in Pectobacterium carotovorum ssp carotovorum. FEMS Microbiol Lett 273, 229–238.[CrossRef]
    [Google Scholar]
  3. Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. & other authors ( 2004; ). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101, 11105–11110.[CrossRef]
    [Google Scholar]
  4. Burr, T., Barnard, A. M. L., Corbett, M. J., Pemberton, C. L., Simpson, N. J. L. & Salmond, G. P. C. ( 2006; ). Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59, 113–125.[CrossRef]
    [Google Scholar]
  5. Carballes, F., Bertrand, C., Bouche, J. P. & Cam, K. ( 1999; ). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34, 442–450.[CrossRef]
    [Google Scholar]
  6. Chatterjee, A., Cui, Y., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. ( 1995; ). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61, 1959–1967.
    [Google Scholar]
  7. Chatterjee, A., Cui, Y. Y. & Chatterjee, A. K. ( 2009; ). RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol 191, 4582–4593.[CrossRef]
    [Google Scholar]
  8. Cui, Y., Chatterjee, A., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. ( 1995; ). Identification of a global repressor gene, RsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177, 5108–5115.
    [Google Scholar]
  9. Cui, Y., Mukherjee, A., Dumenyo, C. K., Liu, Y. & Chatterjee, A. K. ( 1999; ). rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpinEcc production and virulence by modulating levels of regulatory RNA (rsmB) and RNA-binding protein (RsmA). J Bacteriol 181, 6042–6052.
    [Google Scholar]
  10. Cui, Y., Chatterjee, A. & Chatterjee, A. K. ( 2001; ). Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol Plant Microbe Interact 14, 516–526.[CrossRef]
    [Google Scholar]
  11. Cui, Y., Chatterjee, A., Hasegawa, H., Dixit, V., Leigh, N. & Chatterjee, A. K. ( 2005; ). ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein. J Bacteriol 187, 4792–4803.[CrossRef]
    [Google Scholar]
  12. Cui, Y., Chatterjee, A., Yang, H. & Chatterjee, A. K. ( 2008; ). Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol 190, 4610–4623.[CrossRef]
    [Google Scholar]
  13. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  14. Davalos-Garcia, M., Conter, A., Toesca, I., Gutierrez, C. & Cam, K. ( 2001; ). Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol 183, 5870–5876.[CrossRef]
    [Google Scholar]
  15. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  16. Eriksson, A. R. B., Andersson, R. A., Pirhonen, M. & Palva, E. T. ( 1998; ). Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 11, 743–752.[CrossRef]
    [Google Scholar]
  17. Flego, D., Marits, R., Eriksson, A. R. B., Koiv, V., Karlsson, M. B., Heikinheimo, R. & Palva, E. T. ( 2000; ). A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 13, 447–455.[CrossRef]
    [Google Scholar]
  18. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M. P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  19. Gervais, F. G., Phoenix, P. & Drapeau, G. R. ( 1992; ). The rcsB gene, a positive regulator of colanic acid biosynthesis in Escherichia coli, is also an activator of FtsZ expression. J Bacteriol 174, 3964–3971.
    [Google Scholar]
  20. Gottesman, S., Trisler, P. & Torres-Cabassa, A. ( 1985; ). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162, 1111–1119.
    [Google Scholar]
  21. Gupte, G., Woodward, C. & Stout, V. ( 1997; ). Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12. J Bacteriol 179, 4328–4335.
    [Google Scholar]
  22. Harris, S. J., Shih, Y. L., Bentley, S. D. & Salmond, G. P. ( 1998; ). The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol Microbiol 28, 705–717.
    [Google Scholar]
  23. Heikinheimo, R., Flego, D., Pirhonen, M., Karlsson, M. B., Eriksson, A., Mäe, A., Kõiv, V. & Palva, E. T. ( 1995; ). Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 8, 207–217.[CrossRef]
    [Google Scholar]
  24. Hinchliffe, S. J., Howard, S. L., Huang, Y. H., Clarke, D. J. & Wren, B. W. ( 2008; ). The importance of the Rcs phosphorelay in the survival and pathogenesis of the enteropathogenic yersiniae. Microbiology 154, 1117–1131.[CrossRef]
    [Google Scholar]
  25. Hõrak, R., Ilves, H., Pruunsild, P., Kuljus, M. & Kivisaar, M. ( 2004; ). The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol 54, 795–807.[CrossRef]
    [Google Scholar]
  26. Hossain, M. M., Shibata, S., Aizawa, S. I. & Tsuyumu, S. ( 2005; ). Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66, 134–143.[CrossRef]
    [Google Scholar]
  27. Hyytiäinen, H., Sjöblom, S., Palomäki, T., Tuikkala, A. & Palva, E. T. ( 2003; ). The PmrA-PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol 50, 795–807.[CrossRef]
    [Google Scholar]
  28. Ilves, H., Hõrak, R., Teras, R. & Kivisaar, M. ( 2004; ). IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Mol Microbiol 51, 1773–1785.[CrossRef]
    [Google Scholar]
  29. Jones, A. M., Goodwill, A. & Elliott, T. ( 2006; ). Limited role for the DsrA and RprA regulatory RNAs in rpoS regulation in Salmonella enterica. J Bacteriol 188, 5077–5088.[CrossRef]
    [Google Scholar]
  30. Kapatral, V., Campbell, J. W., Minnich, S. A., Thomson, N. R., Matsumura, P. & Pruss, B. M. ( 2004; ). Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiology 150, 2289–2300.[CrossRef]
    [Google Scholar]
  31. Liu, Y., Cui, Y., Mukherjee, A. & Chatterjee, A. K. ( 1998; ). Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29, 219–234.[CrossRef]
    [Google Scholar]
  32. Liu, Y., Jiang, G., Cui, Y., Mukherjee, A., Ma, W. L. & Chatterjee, A. K. ( 1999; ). kdgR Ecc negatively regulates genes for pectinases, cellulase, protease, harpinEcc, and a global RNA regulator in Erwinia carotovora subsp. carotovora. J Bacteriol 181, 2411–2421.
    [Google Scholar]
  33. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  34. Mäe, A., Heikinheimo, R. & Palva, E. T. ( 1995; ). Structure and regulation of the Erwinia carotovora subspecies carotovora Scc3193 cellulase gene Celv1 and the role of cellulase in phytopathogenicity. Mol Gen Genet 247, 17–26.[CrossRef]
    [Google Scholar]
  35. Majdalani, N., Chen, S., Murrow, J., St John, K. & Gottesman, S. ( 2001; ). Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39, 1382–1394.[CrossRef]
    [Google Scholar]
  36. Majdalani, N., Hernandez, D. & Gottesman, S. ( 2002; ). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46, 813–826.[CrossRef]
    [Google Scholar]
  37. Majdalani, N., Heck, M., Stout, V. & Gottesman, S. ( 2005; ). Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187, 6770–6778.[CrossRef]
    [Google Scholar]
  38. Marits, R., Kõiv, V., Laasik, E. & Mäe, A. ( 1999; ). Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology 145, 1959–1966.[CrossRef]
    [Google Scholar]
  39. Marits, R., Tshuikina, M., Pirhonen, M., Laasik, E. & Mäe, A. ( 2002; ). Regulation of the expression of prtW :  gusA fusions in Erwinia carotovora subsp. carotovora. Microbiology 148, 835–842.
    [Google Scholar]
  40. Miller, J. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Mouslim, C., Delgado, M. & Groisman, E. A. ( 2004; ). Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence. Mol Microbiol 54, 386–395.[CrossRef]
    [Google Scholar]
  42. Münch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M. & Jahn, D. ( 2005; ). Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21, 4187–4189.[CrossRef]
    [Google Scholar]
  43. Novel, G., Didier-Fichet, M. L. & Stoeber, F. ( 1974; ). Inducibility of beta-glucuronidase in wild-type and hexuronate-negative mutants of Escherichia coli K-12. J Bacteriol 120, 89–95.
    [Google Scholar]
  44. Pavel, H., Forsman, M. & Shingler, V. ( 1994; ). An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. J Bacteriol 176, 7550–7557.
    [Google Scholar]
  45. Pérombelon, M. C. M. ( 2002; ). Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathol 51, 1–12.[CrossRef]
    [Google Scholar]
  46. Pirhonen, M., Heino, P., Helander, I., Harju, P. & Palva, E. T. ( 1988; ). Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb Pathog 4, 359–367.[CrossRef]
    [Google Scholar]
  47. Pirhonen, M., Saarilahti, H., Karlsson, M. B. & Palva, E. T. ( 1991; ). Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. Mol Plant Microbe Interact 4, 276–283.[CrossRef]
    [Google Scholar]
  48. Prüß, B. M. ( 2000; ). FlhD, a transcriptional regulator in bacteria. Recent Res Dev Microbiol 4, 31–42.
    [Google Scholar]
  49. Prüß, B. M., Liu, X., Hendrickson, W. & Matsumura, P. ( 2001; ). FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197, 91–97.[CrossRef]
    [Google Scholar]
  50. Prüß, B. M., Campbell, J. W., Van Dyk, T. K., Zhu, C., Kogan, Y. & Matsumura, P. ( 2003; ). FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185, 534–543.[CrossRef]
    [Google Scholar]
  51. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  52. Sjöblom, S., Brader, G., Koch, G. & Palva, T. E. ( 2006; ). Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60, 1474–1489.[CrossRef]
    [Google Scholar]
  53. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  54. Takle, G. W., Toth, I. K. & Brurberg, M. B. ( 2007; ). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 7, 50 [CrossRef]
    [Google Scholar]
  55. Wang, Q., Zhao, Y., McClelland, M. & Harshey, R. M. ( 2007; ). The RcsCDB signaling system and swarming motility in Salmonella enterica serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189, 8447–8457.[CrossRef]
    [Google Scholar]
  56. Wang, D., Korban, S. S. & Zhao, Y. ( 2009; ). The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol Plant Pathol 10, 277–290.[CrossRef]
    [Google Scholar]
  57. Wehland, M. & Bernhard, F. ( 2000; ). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 275, 7013–7020.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033936-0
Loading
/content/journal/micro/10.1099/mic.0.033936-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1323 - 1334

Predicted RcsB binding sites in ( ) [ PDF] (15 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error