1887

Abstract

Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the / cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H. The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from0.3 to 3.5 M total Na (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033712-0
2010-03-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/819.html?itemId=/content/journal/micro/10.1099/mic.0.033712-0&mimeType=html&fmt=ahah

References

  1. De Ley J., Caffon H., Reinaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–140
    [Google Scholar]
  2. Dunfield K. E., King G. M.. 2004; Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl Environ Microbiol70:4242–4248
    [Google Scholar]
  3. Hardy K. R., King G. M.. 2001; Enrichment of high-affinity CO oxidizers in Maine forest soil. Appl Environ Microbiol67:3671–3676
    [Google Scholar]
  4. Hoeft S. E., Switzer Blum J., Stolz J. F., Tabita F. R., Witte B., King G. M., Santini J. M., Oremland R. S.. 2007; Alkalilimnicola ehrlichii sp. nov., a novel arsenite-oxidizing, haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol57:504–512
    [Google Scholar]
  5. Hoehler T. M., Bebout B. M., Des Marais D. J.. 2001; The role of microbial mats in the production of reduced gases on the early Earth. Nature412:324–327
    [Google Scholar]
  6. King G. M.. 2003; Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol69:7257–7265
    [Google Scholar]
  7. King G. M., Weber C. F.. 2007; Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol5:107–118
    [Google Scholar]
  8. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  9. Lorite M. J., Tachil J., Sanjua J. N., Meyer O., Berdmar E. J.. 2000; Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl Environ Microbiol66:1871–1876
    [Google Scholar]
  10. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with Folin phenol reagent. J Biol Chem193:265–275
    [Google Scholar]
  11. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218
    [Google Scholar]
  12. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol5:109–118
    [Google Scholar]
  13. Meyer O., Schlegel H. G.. 1978; Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol118:35–43
    [Google Scholar]
  14. Meyer O., Frunzke K., Gadkari D., Jacobitz S., Hugendieck I., Kraut M.. 1990; Utilization of carbon monoxide by aerobes: recent advances. FEMS Microbiol Rev87:253–260
    [Google Scholar]
  15. Mörsdorf G., Frunzke K., Gadkari D., Meyer O.. 1992; Microbial growth on carbon monoxide. Biodegradation3:61–82
    [Google Scholar]
  16. Oremland R. S., Hoeft S. E., Santini J. M., Bano N., Hollibaugh R. A., Hollibaugh J. T.. 2002; Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol68:4795–4802
    [Google Scholar]
  17. Pfennig N., Lippert K. D.. 1966; über das Vitamin B12-bedürfnis phototropher Schwefelbacterien. Arch Microbiol55:245–256
    [Google Scholar]
  18. Schäfer H., Muyzer G.. 2001; Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol30:425–468
    [Google Scholar]
  19. Sorokin D. Y., Kuenen J. G.. 2005; Alkaliphilic chemolithotrophs from soda lakes. FEMS Microbiol Ecol52:287–295
    [Google Scholar]
  20. Sorokin D. Y., Banciu H., Robertson L. A., Kuenen J. G.. 2006a; Haloalkaliphilic sulfur-oxidizing bacteria. In The Prokaryotes, Ecophysiology and Biochemistryvol. 2 pp969–984 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  21. Sorokin D. Y., Zhilina T. N., Lysenko A. M., Tourova T. P., Spiridonova E. M.. 2006b; Metabolic versatility of haloalkaliphilic bacteria from soda lakes belonging to the Alkalispirillum- Alkalilimnicola group. Extremophiles10:213–220
    [Google Scholar]
  22. Spiridonova E. M., Berg I. A., Kolganova T. V., Ivanovsky R. N., Kuznetsov B. B., Tourova T. P.. 2004; An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology73:316–325
    [Google Scholar]
  23. Tolli J. D., Sievert S. M., Taylor C. D.. 2006; Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-associated clade to total CO oxidation. Appl Environ Microbiol72:1966–1973
    [Google Scholar]
  24. Tourova T. P., Spiridonova E. M., Berg I. A., Slobodova N. V., Boulygina E. S., Sorokin D. Y.. 2007; Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH genes. Int J Syst Evol Microbiol57:2387–2398
    [Google Scholar]
  25. Van de Peer Y., De Wachter R.. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci10:569–570
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033712-0
Loading
/content/journal/micro/10.1099/mic.0.033712-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error