1887

Abstract

complex (MAC) currently comprises eight species of environmental and animal-associated, slowly-growing mycobacteria: , , , , , , and . In humans, MAC organisms are responsible for opportunistic infections whose unique epidemiology remains poorly understood, in part due to the lack of a genotyping method applicable to all eight MAC species. In this study we developed multispacer sequence typing (MST), a sequencing-based method, for the genotyping of MAC organisms. An alignment of the genome sequence of subsp. strain104 and subsp. strain K-10 revealed621 intergenic spacers <1000 bp. From these, 16 spacers were selected that ranged from 300 to 800 bp and contained a number of variable bases, <50 within each of the 16 spacers. Four spacers were successfully PCR-amplified and sequenced in 11 reference strains. Combining the sequence of these four spacers in 106 MAC organisms, including 83 , 11 , six , two and one each of , , and , yielded a total of 45 spacer types, with an index of discrimination of 0.94. Each spacer type was specific for a species and certain spacer types were specific for subspecies of . MST is a new method for genotyping of organisms belonging to any one of the eight MAC species tested in this study.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033522-0
2010-03-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/687.html?itemId=/content/journal/micro/10.1099/mic.0.033522-0&mimeType=html&fmt=ahah

References

  1. Bang D., Herlin T., Stegger M., Andersen A. B., Torkko P., Tortoli E., Thomsen V. O.. 2008; Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocomprised child. Int J Syst Evol Microbiol58:2398–2402
    [Google Scholar]
  2. Ben Salah I., Adekambi T., Raoult D., Drancourt M.. 2008; rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology154:3715–3723
    [Google Scholar]
  3. Ben Salah I., Cayrou C., Raoult D., Drancourt M.. 2009; Mycobacterium marseillense sp. nov., Mycobacterium timonense sp.nov. and Mycobacterium bouchedurhonense sp. nov.,novel species in the Mycobacterium avium complex. Int J Syst Evol Microbiol59:2803–2808
    [Google Scholar]
  4. Biet F., Boschiroli M. L., Thorel M. F., Guilloteau L. A.. 2005; Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC. Vet Res36:411–436
    [Google Scholar]
  5. Bills N. D., Hinrichs S. H., Aden T. A., Wickert R. S., Iwen P. C.. 2009; Molecular identification of Mycobacterium chimaera as a cause of infection in a patient with chronic obstructive pulmonary disease. Diagn Microbiol Infect Dis63:292–295
    [Google Scholar]
  6. Blackwood K. S., He C., Gunton J., Turenne C. Y., Wolfe J., Kabani A. M.. 2000; Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol38:2846–2852
    [Google Scholar]
  7. Bruijnesteijn van Coppenraet L. E., de Haas P. E., Lindeboom J. A., Kuijper E. J., van Soolingen D.. 2008; Lymphadenitis in children is caused by Mycobacterium avium hominissuis and not related to ‘bird tuberculosis’. Eur J Clin Microbiol Infect Dis27:293–299
    [Google Scholar]
  8. Cilliers F. J., Warren R. M., Hauman J. H., Wiid I. J., van Helden P. D.. 1997; Oligonucleotide (GTG)5 as an epidemiological tool in the study of nontuberculous mycobacteria. J Clin Microbiol35:1545–1549
    [Google Scholar]
  9. Covert T. C., Rodgers M. R., Reyes A. L., Stelma G. N. Jr. 1999; Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol65:2492–2496
    [Google Scholar]
  10. Djelouadji Z., Arnold C., Gharbia S., Raoult D., Drancourt M.. 2008a; Multispacer sequence typing for Mycobacterium tuberculosis genotyping. PLoS One3:e2433
    [Google Scholar]
  11. Djelouadji Z., Raoult D., Daffé M., Drancourt M.. 2008b; A single step sequencing method for identification of Mycobacterium tuberculosis complex species. PLoS Negl Trop Dis2:e253
    [Google Scholar]
  12. Du Moulin G. C., Stottmeier K. D., Pelletier P. A., Tsang A. Y., Hedley-Whyte J.. 1988; Concentration of Mycobacterium avium by hospital hot water systems. JAMA260:1599–1601
    [Google Scholar]
  13. Esparcia O., Navarro F., Quer M., Coll P.. 2008; Lymphadenopathy caused by Mycobacterium colombiense. J Clin Microbiol46:1885–1887
    [Google Scholar]
  14. Falkinham J. O. III, Norton C. D., LeChevallier M. W.. 2001; Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol67:1225–1231
    [Google Scholar]
  15. Fournier P. E., Raoult D.. 2007; Identification of rickettsial isolates at the species level using multi-spacer typing. BMC Microbiol7:72
    [Google Scholar]
  16. Guerrero C., Bernasconi C., Burki D., Bodmer T., Telenti A.. 1995; A novel insertion element from Mycobacterium avium, IS 1245, is a specific target for analysis of strain relatedness. J Clin Microbiol33:304–307
    [Google Scholar]
  17. Harris N. B., Barletta R. G.. 2001; Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin Microbiol Rev14:489–512
    [Google Scholar]
  18. Hilborn E. D., Yakrus M. A., Covert T. C., Harris S. I., Donnelly S. F., Schmitt M. T., Toney S., Bailey S. A., Stelma G. N. Jr. 2008; Molecular comparison of Mycobacterium avium isolates from clinical and environmental sources. Appl Environ Microbiol74:4966–4968
    [Google Scholar]
  19. Hunter P. R., Gaston M. A.. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol26:2465–2466
    [Google Scholar]
  20. Kasai H., Ezaki T., Harayama S.. 2000; Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol38:301–308
    [Google Scholar]
  21. Komijn R. E., de Haas P. E., Schneider M. M., Eger T., Nieuwenhuijs J. H., van den Hoek R. J., Bakker D., van Zijd Erveld F. G., van Soolingen D.. 1999; Prevalence of Mycobacterium avium in slaughter pigs in The Netherlands and comparison of IS 1245 restriction fragment length polymorphism patterns of porcine and human isolates. J Clin Microbiol37:1254–1259
    [Google Scholar]
  22. Kumar S., Tamura K., Nei M.. 2004; MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform5:150–163
    [Google Scholar]
  23. Kyriakopoulos A. M., Tassios P. T., Matsiota-Bernard P., Marinis E., Tsaousidou S., Legakis N. J.. 1997; Characterization to species level of Mycobacterium avium complex strains from human immunodeficiency virus-positive and -negative patients. J Clin Microbiol35:3001–3003
    [Google Scholar]
  24. Le Dantec C., Duguet J. P., Montiel A., Dumoutier N., Dubrou S., Vincent V.. 2002; Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol68:5318–5325
    [Google Scholar]
  25. Mazurek G. H., Hartman S., Zhang Y., Brown B. A., Hector J. S., Murphy D., Wallace R. J. Jr. 1993; Large DNA restriction fragment polymorphism in the Mycobacterium avium- M. intracellulare complex: a potential epidemiologic tool. J Clin Microbiol31:390–394
    [Google Scholar]
  26. Mijs W., de Haas P., Rossau R., van der Laan L., Rigouts L., Portaels F., van Soolingen D.. 2002; Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘ M.avium subsp. hominissuis’ for the human/porcine type of M. avium. Int J Syst Evol Microbiol52: 1505. 1518
    [Google Scholar]
  27. Morita Y., Maruyama S., Kabeya H., Nagai A., Kozawa K., Kato M., Nakajima T., Mikami T., Katsube Y., Kimura H.. 2004; Genetic diversity of the dnaJ gene in the Mycobacterium avium complex. J Med Microbiol53:813–817
    [Google Scholar]
  28. Murcia M. I., Tortoli E., Menendez M. C., Palenque E., Garcia M. J.. 2006; Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int J Syst Evol Microbiol56:2049–2054
    [Google Scholar]
  29. Ning Z., Cox A. J., Mullikin J. C.. 2001; SSAHA: a fast search method for large DNA databases. Genome Res11:1725–1729
    [Google Scholar]
  30. Nishiuchi Y., Maekura R., Kitada S., Tamaru A., Taguri T., Kira Y., Hiraga T., Hirotani A., Yoshimura K.. other authors 2007; The recovery of Mycobacterium avium-intracellulare complex (MAC) from the residential bathrooms of patients with pulmonary MAC. Clin Infect Dis45:347–351
    [Google Scholar]
  31. Pestel-Caron M., Graff G., Berthelot G., Pons J. L., Lemeland J. F.. 1999; Molecular analysis of Mycobacterium avium isolates by using pulsed-field gel electrophoresis and PCR. J Clin Microbiol37:2450–2455
    [Google Scholar]
  32. Reed C., von Reyn C. F., Chamblee S., Ellerbrock T. V., Johnson J. W., Marsh B. J., Johnson L. S., Trenschel R. J., Horsburgh C. R. Jr. 2006; Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol164:32–40
    [Google Scholar]
  33. Santos R., Oliveira F., Fernandes J., Gonçalves S., Macieira F., Cadete M.. 2005; Detection and identification of mycobacteria in the Lisbon water distribution system. Water Sci Technol52:177–180
    [Google Scholar]
  34. Thierry D., Bauge S., Poveda J. D., Vincent V., Guesdon J. L.. 1993; Rapid identification of Mycobacterium avium-intracellulare complex strains: clinical practice evaluation of DT6 and DT1 probes. J Infect Dis168:1337–1338
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  36. Thorel M. F., Krichevsky M., Levy-Frebault V. V.. 1990; Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol40:254–260
    [Google Scholar]
  37. Tortoli E., Rindi L., Garcia M. J., Chiaradonna P., Dei R., Garzelli C., Kroppenstedt R. M., Lari N., Mattei R.. other authors 2004; Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol54:1277–1285
    [Google Scholar]
  38. Turenne C. Y., Semret M., Cousins D. V., Collins D. M., Behr M. A.. 2006; Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. J Clin Microbiol44:433–440
    [Google Scholar]
  39. Turenne C. Y., Wallace R., Behr M. A.. 2007; Mycobacterium avium in the postgenomic era. Clin Microbiol Rev20:205–229
    [Google Scholar]
  40. Turenne C. Y., Collins M., Alexander D. C., Behr M. A.. 2008; Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J Bacteriol190:2479–2487
    [Google Scholar]
  41. Vuorenmaa K., Ben Salah I., Barlogis V., Chambost H., Drancourt M.. 2009; Mycobacterium colombiense and pseudotuberculous lymphadenopathy. Emerg Infect Dis15:619–620
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033522-0
Loading
/content/journal/micro/10.1099/mic.0.033522-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error