1887

Abstract

Since and are obligate human pathogens, a comparison with commensal species of the same genus could reveal differences important in pathogenesis. The recent completion of commensal genome draft assemblies allowed us to perform a comparison of the genes involved in the catalysis, assembly and regulation of the denitrification pathway, which has been implicated in the virulence of several bacteria. All species contained a highly conserved nitric oxide reductase (NorB) and a nitrite reductase (AniA or NirK) that was highly conserved in the catalytic but divergent in the N-terminal lipid modification and C-terminal glycosylation domains. Only contained a nitrate reductase (Nar), and only , , , and contained a nitrous oxide reductase (Nos) complex. The regulators of the denitrification genes, FNR, NarQP and NsrR, were highly conserved, except for the GAF domain of NarQ. Biochemical examination of laboratory strains revealed that all of the neisserial species tested except had a two- to fourfold lower nitrite reductase activity than , while and most of the commensal species had a two- to fourfold higher nitric oxide (NO) reductase activity. For and most of the commensal , there was a greater than fourfold reduction in the NO steady-state level in the presence of nitrite as compared with . All of the species tested generated an NO steady-state level in the presence of an NO donor that was similar to that of . The greatest difference between the species was the lack of a functional Nos system in the pathogenic species and

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032961-0
2009-12-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4093.html?itemId=/content/journal/micro/10.1099/mic.0.032961-0&mimeType=html&fmt=ahah

References

  1. Baek S. H., Rajashekara G., Splitter G. A., Shapleigh J. P.. 2004; Denitrification genes regulate Brucella virulence in mice. J Bacteriol186:6025–6031
    [Google Scholar]
  2. Barth K., Clark V. L.. 2008; Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite. Can J Microbiol54:639–646
    [Google Scholar]
  3. Berger U.. 1961; Reduction of nitrate and nitrite by Neisseria. . Z Hyg Infektionskr148:45–50
    [Google Scholar]
  4. Blakebrough I. S., Greenwood B. M., Whittle H. C., Bradley A. K., Gilles H. M.. 1982; The epidemiology of infections due to Neisseria meningitidis and Neisseria lactamica in a northern Nigerian community. J Infect Dis146:626–637
    [Google Scholar]
  5. Bodenmiller D. M., Spiro S.. 2006; The yjeB ( nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol188:874–881
    [Google Scholar]
  6. Bogdan C.. 2001; Nitric oxide and the immune response. Nat Immun2:907–916
    [Google Scholar]
  7. Boulanger M. J., Murphy M. E.. 2002; Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases. J Mol Biol315:1111–1127
    [Google Scholar]
  8. Boulanger M. J., Kukimoto M., Nishiyama M., Horinouchi S., Murphy M. E.. 2000; Catalytic roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-containing nitrite reductase. J Biol Chem275:23957–23964
    [Google Scholar]
  9. Cardinale J. A.. 1999; Structural and functional analysis of aniA, the major anaerobically induced outer membrane protein of Neisseria gonorrhoeae PhD thesis University of Rochester; Rochester, NY:
    [Google Scholar]
  10. Cardinale J. A., Clark V. L.. 2005; Determinants of nitric oxide steady-state levels during anaerobic respiration by Neisseria gonorrhoeae. Mol Microbiol58:177–188
    [Google Scholar]
  11. Clark V. L., Campbell L. A., Palermo D. A., Evans T. M., Klimpel K. W.. 1987; Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae. Infect Immun55:1359–1364
    [Google Scholar]
  12. Clark V. L., Isabella V. M., Barth K., Overton T.. 2009; Regulation and function of the Neisserial denitrification pathway: life with limited oxygen. In Neisseria: Molecular Mechanisms of Pathogenesis Edited by Genco C. A., Wetzler L.. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  13. Corpet F.. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res16:10881–10890
    [Google Scholar]
  14. Falsetta M. L. B. T., Shao J., Ketterer C., Steichen C., Jennings M. P., Apicella M. A.. 2008; Transcriptional profiling of Neisseria gonorrhoeae biofilm indicates that biofilms grow using anaerobic or microaerobic metabolism. Abstract P033, p114, in 16th International Pathogenic Neisseria Conference, September 7–12 2008 Rotterdam:
    [Google Scholar]
  15. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J.. 1991; Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry30:7180–7185
    [Google Scholar]
  16. Filenko N., Spiro S., Browning D. F., Squire D., Overton T. W., Cole J., Constantinidou C.. 2007; The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol189:4410–4417
    [Google Scholar]
  17. Gilberthorpe N. J., Lee M. E., Stevanin T. M., Read R. C., Poole R. K.. 2007; NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN- γ-stimulated J774.2 macrophages. Microbiology153:1756–1771
    [Google Scholar]
  18. Gold R., Goldschneider I., Lepow M. L., Draper T. F., Randolph M.. 1978; Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J Infect Dis137:112–121
    [Google Scholar]
  19. Goretski J., Zafiriou O. C., Hollocher T. C.. 1990; Steady-state nitric oxide concentrations during denitrification. J Biol Chem265:11535–11538
    [Google Scholar]
  20. Hartig E., Schiek U., Vollack K. U., Zumft W. G.. 1999; Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J Bacteriol181:3658–3665
    [Google Scholar]
  21. Herbert D. A., Ruskin J.. 1981; Are the “nonpathogenic” neisseriae pathogenic?. Am J Clin Pathol75:739–743
    [Google Scholar]
  22. Holloway P., McCormick W., Watson R. J., Chan Y. K.. 1996; Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol178:1505–1514
    [Google Scholar]
  23. Householder T. C.. 2000; Regulation of gene expression in Neisseria gonorrhoeae: aniA and norB, examples from the denitrification pathway PhD thesis University of Rochester; Rochester, NY:
    [Google Scholar]
  24. Householder T. C., Belli W. A., Lissenden S., Cole J. A., Clark V. L.. 1999; cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol181:541–551
    [Google Scholar]
  25. Householder T. C., Fozo E. M., Cardinale J. A., Clark V. L.. 2000; Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. Infect Immun68:5241–5246
    [Google Scholar]
  26. Isabella V., Wright L. F., Barth K., Spence J. M., Grogan S., Genco C. A., Clark V. L.. 2008; cis- and trans-acting elements involved in regulation of norB ( norZ), the gene encoding nitric oxide reductase in Neisseria gonorrhoeae. Microbiology154:226–239
    [Google Scholar]
  27. Isabella V. M., Lapek J. D. Jr, Kennedy E. M., Clark V. L.. 2009; Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol Microbiol71:227–239
    [Google Scholar]
  28. Kakutani T., Watanabe H., Arima K., Beppu T.. 1981; A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis strain S-6. J Biochem89:463–472
    [Google Scholar]
  29. Kataoka K., Furusawa H., Takagi K., Yamaguchi K., Suzuki S.. 2000; Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase. J Biochem127:345–350
    [Google Scholar]
  30. Kellogg D. S. Jr, Peacock W. L. Jr, Deacon W. E., Brown L., Pirkle D. I.. 1963; Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol85:1274–1279
    [Google Scholar]
  31. Knapp J. S.. 1988; Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev1:415–431
    [Google Scholar]
  32. Knapp J. S., Clark V. L.. 1984; Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun46:176–181
    [Google Scholar]
  33. Ku S. C., Schulz B. L., Power P. M., Jennings M. P.. 2009; The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem Biophys Res Commun378:84–89
    [Google Scholar]
  34. Lauer B. A., Fisher C. E.. 1976; Neisseria lactamica meningitis. Am J Dis Child130:198–199
    [Google Scholar]
  35. Lissenden S., Mohan S., Overton T., Regan T., Crooke H., Cardinale J. A., Householder T. C., Adams P., O'Conner C. D.. other authors 2000; Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth. Mol Microbiol37:839–855
    [Google Scholar]
  36. Lundberg J. O., Weitzberg E., Cole J. A., Benjamin N.. 2004; Nitrate, bacteria and human health. Nat Rev Microbiol2:593–602
    [Google Scholar]
  37. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R.. other authors 2009; CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res37:D205–D210
    [Google Scholar]
  38. Mellies J., Jose J., Meyer T. F.. 1997; The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol Gen Genet256:525–532
    [Google Scholar]
  39. Morse S. A., Knapp J. A.. 1987; Neisserial infections. In Diagnostic Procedures for Bacterial Infections pp407–432 Edited by Wentworth B. B.. Washington, DC: American Public Health Association;
    [Google Scholar]
  40. Nakano M. M., Geng H., Nakano S., Kobayashi K.. 2006; The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol188:5878–5887
    [Google Scholar]
  41. Olin A. C., Aldenbratt A., Ekman A., Ljungkvist G., Jungersten L., Alving K., Toren K.. 2001; Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med95:153–158
    [Google Scholar]
  42. Overton T., Reid E. G., Foxall R., Smith H., Busby S. J., Cole J. A.. 2003; Transcription activation at Escherichia coli FNR-dependent promoters by the gonococcal FNR protein: effects of a novel S18F substitution and comparisons with the corresponding substitution in E. coli FNR. J Bacteriol185:4734–4747
    [Google Scholar]
  43. Overton T. W., Whitehead R., Li Y., Snyder L. A., Saunders N. J., Smith H., Cole J. A.. 2006; Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ–NarP. J Biol Chem281:33115–33126
    [Google Scholar]
  44. Philippot L.. 2002; Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta1577:355–376
    [Google Scholar]
  45. Potter L., Angove H., Richardson D., Cole J.. 2001; Nitrate reduction in the periplasm of Gram-negative bacteria. Adv Microb Physiol45:51–112
    [Google Scholar]
  46. Rock J. D., Mahnane M. R., Anjum M. F., Shaw J. G., Read R. C., Moir J. W.. 2005; The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels. Mol Microbiol58:800–809
    [Google Scholar]
  47. Rock J. D., Thomson M. J., Read R. C., Moir J. W.. 2007; Regulation of denitrification genes in Neisseria meningitidis by nitric oxide and the repressor NsrR. J Bacteriol189:1138–1144
    [Google Scholar]
  48. Schwartz E., Henne A., Cramm R., Eitinger T., Friedrich B., Gottschalk G.. 2003; Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol332:369–383
    [Google Scholar]
  49. Short H. B., Clark V. L., Kellogg D. S. Jr, Young F. E.. 1982; Anaerobic survival of clinical isolates and laboratory strains of Neisseria gonorrhoea: use in transfer and storage. J Clin Microbiol15:915–919
    [Google Scholar]
  50. Stefanelli P., Colotti G., Neri A., Salucci M. L., Miccoli R., Di Leandro L., Ippoliti R.. 2008; Molecular characterization of nitrite reductase gene ( aniA) and gene product in Neisseria meningitidis isolates: is aniA essential for meningococcal survival?. IUBMB Life60:629–636
    [Google Scholar]
  51. Stefano G., Gouman Y., Bilfinger T. V., Welters I., Cadet P.. 2000; Basal nitric oxide limits immune, nervous, and cardiovascular excitation: human endothelia express a mu opiate receptor. Prog Neurobiol60:513–530
    [Google Scholar]
  52. Stevanin T. M., Moir J. W., Read R. C.. 2005; Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun73:3322–3329
    [Google Scholar]
  53. Stevanin T. M., Laver J. R., Poole R. K., Moir J. W., Read R. C.. 2007; Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect9:981–987
    [Google Scholar]
  54. Szurmant H., White R. A., Hoch J. A.. 2007; Sensor complexes regulating two-component signal transduction. Curr Opin Struct Biol17:706–715
    [Google Scholar]
  55. Tavares P., Pereira A. S., Moura J. J., Moura I.. 2006; Metalloenzymes of the denitrification pathway. J Inorg Biochem100:2087–2100
    [Google Scholar]
  56. Thomson M. J., Stevanin T. M., Moir J. W.. 2008; Measuring nitric oxide metabolism in the pathogen Neisseria meningitidis. Methods Enzymol437:539–560
    [Google Scholar]
  57. Tunbridge A. J., Stevanin T. M., Lee M., Marriott H. M., Moir J. W., Read R. C., Dockrell D. H.. 2006; Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect Immun74:729–733
    [Google Scholar]
  58. Van Alst N. E., Picardo K. F., Iglewski B. H., Haidaris C. G.. 2007; Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun75:3780–3790
    [Google Scholar]
  59. Vedros N. A.. 1984; Genus I. Neisseria. In Bergey's Manual of Systematic Bacteriology pp290–296 Edited by Krieg N. R., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  60. Velasco L., Mesa S., Xu C. A., Delgado M. J., Bedmar E. J.. 2004; Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum. Antonie Van Leeuwenhoek85:229–235
    [Google Scholar]
  61. Whitehead R. N., Cole J. A.. 2006; Different responses to nitrate and nitrite by the model organism Escherichia coli and the human pathogen Neisseria gonorrhoeae. Biochem Soc Trans34:111–114
    [Google Scholar]
  62. Wolanin P. M., Thomason P. A., Stock J. B.. 2002; Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol3:REVIEWS3013
    [Google Scholar]
  63. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032961-0
Loading
/content/journal/micro/10.1099/mic.0.032961-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error