1887

Abstract

Carbonic anhydrases (CAs) are metalloenzymes that catalyse the interconversion of carbon dioxide and bicarbonate with high efficiency. This reaction is fundamental to biological processes such as respiration, photosynthesis, pH homeostasis, CO transport and electrolyte secretion. CAs are distributed among all three domains of life, and are currently divided into five evolutionarily unrelated classes (, , , and ). Fungal CAs have only recently been identified and characterized in detail. While and each have only one -CA, multiple copies of -CA- and -CA-encoding genes are found in other fungi. Recent work demonstrates that CAs play an important role in the CO-sensing system of fungal pathogens and in the regulation of sexual development. This review focuses on CA functions in , the fungal pathogens and , and the filamentous ascomycete .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032581-0
2010-01-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/23.html?itemId=/content/journal/micro/10.1099/mic.0.032581-0&mimeType=html&fmt=ahah

References

  1. Aguilera J., Petit T., de Winde J. H., Pronk J. T.. 2005a; Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Res5:579–593
    [Google Scholar]
  2. Aguilera J., Van Dijken J. P., De Winde J. H., Pronk J. T.. 2005b; Carbonic anhydrase (Nce103p): an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochem J391:311–316
    [Google Scholar]
  3. Amoroso G., Morell-Avrahov L., Müller D., Klug K., Sültemeyer D.. 2005; The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Mol Microbiol56:549–558
    [Google Scholar]
  4. Anderson P. M., Carlson J. D., Rosenthal G. A., Meister A.. 1973; Effect of potassium cyanate on the catalytic activities of carbamyl phosphate synthetase. Biochem Biophys Res Commun55:246–252
    [Google Scholar]
  5. Anderson P. M., Sung Y. C., Fuchs J. A.. 1990; The cyanase operon and cyanate metabolism. FEMS Microbiol Rev7:247–252
    [Google Scholar]
  6. Bahn Y. S., Mühlschlegel F. A.. 2006; CO2 sensing in fungi and beyond. Curr Opin Microbiol9:572–578
    [Google Scholar]
  7. Bahn Y. S., Cox G. M., Perfect J. R., Heitman J.. 2005; Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol15:2013–2020
    [Google Scholar]
  8. Bahn Y. S., Xue C., Idnurm A., Rutherford J. C., Heitman J., Cardenas M. E.. 2007; Sensing the environment: lessons from fungi. Nat Rev Microbiol5:57–69
    [Google Scholar]
  9. Chen Y., Cann M. J., Litvin T. N., Iourgenko V., Sinclair M. L., Levin L. R., Buck J.. 2000; Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science289:625–628
    [Google Scholar]
  10. Clark D., Rowlett R. S., Coleman J. R., Klessig D. F.. 2004; Complementation of the yeast deletion mutant DeltaNCE103 by members of the beta class of carbonic anhydrases is dependent on carbonic anhydrase activity rather than on antioxidant activity. Biochem J379:609–615
    [Google Scholar]
  11. Cleves A. E., Cooper D. N., Barondes S. H., Kelly R. B.. 1996; A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol133:1017–1026
    [Google Scholar]
  12. Cronk J. D., Endrizzi J. A., Cronk M. R., O'Neill J. W., Zhang K. Y.. 2001; Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci10:911–922
    [Google Scholar]
  13. Elleuche S., Pöggeler S.. 2008; A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol45:1458–1469
    [Google Scholar]
  14. Elleuche S., Pöggeler S.. 2009a; Evolution of carbonic anhydrases in fungi. Curr Genet55:211–222
    [Google Scholar]
  15. Elleuche S., Pöggeler S.. 2009b; Beta-carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora. PLoS One4:e5177
    [Google Scholar]
  16. Fabre N., Reiter I. M., Becuwe-Linka N., Genty B., Rumeau D.. 2007; Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ30:617–629
    [Google Scholar]
  17. Ferreira F. J., Guo C., Coleman J. R.. 2008; Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol147:585–594
    [Google Scholar]
  18. Götz R., Gnann A., Zimmermann F. K.. 1999; Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast15:855–864
    [Google Scholar]
  19. Guilloton M., Karst F.. 1987; Cyanate specifically inhibits arginine biosynthesis in Escherichia coli K12: a case of by-product inhibition?. J Gen Microbiol133:655–665
    [Google Scholar]
  20. Guilloton M. B., Lamblin A. F., Kozliak E. I., Gerami-Nejad M., Tu C., Silverman D., Anderson P. M., Fuchs J. A.. 1993; A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. J Bacteriol175:1443–1451
    [Google Scholar]
  21. Guilloton M., Espie G. S., Anderson P. M.. 2002; What is the role of cyanase in plants?. In Reviews in Plant Biochemistry and Biotechnology pp57–79 Edited by Goyal A., Metha S. L., Lodha M. L..
  22. Innocenti A., Leewattanapasuk W., Muhlschlegel F. A., Mastrolorenzo A., Supuran C. T.. 2009; Carbonic anhydrase inhibitors. Inhibition of the beta-class enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg Med Chem Lett19:4802–4805
    [Google Scholar]
  23. Jones N. L.. 2008; An obsession with CO2. Appl Physiol Nutr Metab33:641–650
    [Google Scholar]
  24. Kamerewerd J., Jansson M., Nowrousian M., Pöggeler S., Kück U.. 2008; Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics180:191–206
    [Google Scholar]
  25. Kimber M. S., Pai E. F.. 2000; The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J19:1407–1418
    [Google Scholar]
  26. Klengel T., Liang W. J., Chaloupka J., Ruoff C., Schröppel K., Naglik J. R., Eckert S. E., Mogensen E. G., Haynes K.. other authors 2005; Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol15:2021–2026
    [Google Scholar]
  27. Kück U., Pöggeler S., Nowrousian M., Nolting N., Engh I.. 2009; Sordaria macrospora, a model system for fungal development. In The Mycota XV pp17–39 Edited by Anke T., Weber D.. Berlin, Heidelberg: Springer;
  28. Kusian B., Sültemeyer D., Bowien B.. 2002; Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol184:5018–5026
    [Google Scholar]
  29. Li W., Zhou P. P., Jia L. P., Yu L. J., Li X. L., Zhu M.. 2009; Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi. Mycopathologia167:37–46
    [Google Scholar]
  30. Mogensen E. G., Mühlschlegel F. A.. 2008; CO2 sensing and virulence of Candida albicans. In The Mycota VI pp83–94 Edited by Brackhage A. A., Zipfel P. F.. Berlin, Heidelberg: Springer;
  31. Mogensen E. G., Janbon G., Chaloupka J., Steegborn C., Fu M. S., Moyrand F., Klengel T., Pearson D. S., Geeves M. A.. other authors 2006; Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell5:103–111
    [Google Scholar]
  32. Nishida H., Beppu T., Ueda K.. 2009; Symbiobacterium lost carbonic anhydrase in the course of evolution. J Mol Evol68:90–96
    [Google Scholar]
  33. Nowrousian M., Würtz C., Pöggeler S., Kück U.. 2004; Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genet Biol41:285–292
    [Google Scholar]
  34. Parisi G., Perales M., Fornasari M. S., Colaneri A., González-Schain N., Gómez-Casati D., Zimmermann S., Brennicke A., Araya A.. other authors 2004; Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol55:193–207
    [Google Scholar]
  35. Pöggeler S., Nowrousian M., Kück U.. 2006; Fruiting body development in ascomycetes. In The Mycota I pp325–355 Edited by Kües U., Fischer R. Berlin & Heidelberg: Springer;
  36. Sawaya M. R., Cannon G. C., Heinhorst S., Tanaka S., Williams E. B., Yeates T. O., Kerfeld C. A.. 2006; The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem281:7546–7555
    [Google Scholar]
  37. Schlicker C., Hall R. A., Vullo D., Middelhaufe S., Gertz M., Supuran C. T., Mühlschlegel F. A., Steegborn C.. 2009; Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol385:1207–1220
    [Google Scholar]
  38. Slaymaker D. H., Navarre D. A., Clark D., del Pozo O., Martin G. B., Klessig D. F.. 2002; The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A99:11640–11645
    [Google Scholar]
  39. Supuran C. T.. 2008; Carbonic anhydrases – an overview. Curr Pharm Des14:603–614
    [Google Scholar]
  40. Tripp B. C., Smith K., Ferry J. G.. 2001; Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem276:48615–48618
    [Google Scholar]
  41. Wistrand P. J.. 1981; The importance of carbonic anhydrase B and C for the unloading of CO2 by the human erythrocyte. Acta Physiol Scand113:417–426
    [Google Scholar]
  42. Xu Y., Feng L., Jeffrey P. D., Shi Y., Morel F. M.. 2008; Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature452:56–61
    [Google Scholar]
  43. Ynalvez R. A., Xiao Y., Ward A. S., Cunnusamy K., Moroney J. V.. 2008; Identification and characterization of two closely related beta-carbonic anhydrases from Chlamydomonas reinhardtii. Physiol Plant133:15–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032581-0
Loading
/content/journal/micro/10.1099/mic.0.032581-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error