1887

Abstract

The transcriptional regulation of three distinct alcohol oxidation systems, alcohol dehydrogenase (ADH)-I, ADH-IIB and ADH-IIG, in HK5 was investigated under various induction conditions. The promoter activities of the genes involved in alcohol oxidation were determined using a transcriptional fusion promoter-probe vector. Ethanol was the best inducer for the divergent promoters of and , encoding ADH-I and a cytochrome , respectively. Primary and secondary C3 and C4 alcohols and butyraldehyde specifically induced the divergent promoters of and , encoding ADH-IIB and an NAD-dependent aldehyde dehydrogenase, respectively. The promoter of ADH-IIG responded well to ()-(+)-1,2-propanediol induction. In addition, the roles of genes encoding the response regulators and , located downstream of were inferred from the properties of - or -disrupted mutants and gene complementation tests. The gene products of both and were strictly necessary for transcription. The mutation and complementation studies also suggested a role for AgmR, but not ExaE, in the transcriptional regulation of (ADH-IIB) and (AGH-IIG). A hypothetical scheme describing a regulatory network, which directs expression of the three distinct alcohol oxidation systems in HK5, was derived.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021956-0
2009-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/594.html?itemId=/content/journal/micro/10.1099/mic.0.021956-0&mimeType=html&fmt=ahah

References

  1. Anthony, C. ( 1982; ). The Biochemistry of Methylotrophs. London: Academic Press.
  2. Anthony, C. & Williams, P. ( 2003; ). The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647, 18–23.[CrossRef]
    [Google Scholar]
  3. Barrios, H., Valderrama, B. & Morett, E. ( 1999; ). Compilation and analysis of σ 54-dependent promoter sequences. Nucleic Acids Res 27, 4305–4313.[CrossRef]
    [Google Scholar]
  4. Chen, Z. W., Matsushita, K., Yamashita, T., Fujii, T. A., Toyama, H., Adachi, O., Bellamy, H. D. & Mathews, F. S. ( 2002; ). Structure at 1.9 Å resolution of a quinohemoprotein alcohol dehydrogenase from Pseudomonas putida HK5. Structure 10, 837–849.[CrossRef]
    [Google Scholar]
  5. Choi, K. H., Kumar, A. & Schweizer, H. P. ( 2006; ). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64, 391–397.[CrossRef]
    [Google Scholar]
  6. Chuang, S. E., Daniels, D. L. & Blattner, F. R. ( 1993; ). Global regulation of gene expression in Escherichia coli. J Bacteriol 175, 2026–2036.
    [Google Scholar]
  7. Dulley, J. R. & Grieve, P. A. ( 1975; ). A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64, 136–141.[CrossRef]
    [Google Scholar]
  8. Farinha, M. A. & Kropinski, A. M. ( 1990; ). Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172, 3496–3499.
    [Google Scholar]
  9. Gliese, N., Khodaverdi, V., Schobert, M. & Görisch, H. ( 2004; ). AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150, 1851–1857.[CrossRef]
    [Google Scholar]
  10. Görisch, H. ( 2003; ). The ethanol oxidation system and its regulation in Pseudomonas aeruginosa. Biochim Biophys Acta 1647, 98–102.[CrossRef]
    [Google Scholar]
  11. Harley, C. B. & Reynolds, R. P. ( 1987; ). Analysis of E. coli promoter sequences. Nucleic Acids Res 15, 2343–2361.[CrossRef]
    [Google Scholar]
  12. Lidstrom, M. E., Anthony, C., Biville, F., Gasser, F., Goodwin, P., Hanson, R. S. & Harms, N. ( 1994; ). New unified nomenclature for genes involved in the oxidation of methanol in Gram-negative bacteria. FEMS Microbiol Lett 117, 103–106.[CrossRef]
    [Google Scholar]
  13. Marx, C. J. & Lidstrom, M. E. ( 2001; ). Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147, 2065–2075.
    [Google Scholar]
  14. Matsushita, K., Yamashita, T., Aoki, N., Toyama, H. & Adachi, O. ( 1999; ). Electron transfer from quinohemoprotein alcohol dehydrogenase to blue copper protein azurin in the alcohol oxidase respiratory chain of Pseudomonas putida HK5. Biochemistry 38, 6111–6118.[CrossRef]
    [Google Scholar]
  15. Miller, J. M. ( 1992; ). A Short Course in Bacterial Genetics, a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Promden, W., Vangnai, A. S., Pongsawasdi, P., Adachi, O., Matsushita, K. & Toyama, H. ( 2008; ). Disruption of quinoprotein ethanol dehydrogenase gene and adjacent genes in Pseudomonas putida HK5. FEMS Microbiol Lett 280, 203–209.[CrossRef]
    [Google Scholar]
  17. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd eds. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Schobert, M. & Görisch, H. ( 1999; ). Cytochrome c 550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c 550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145, 471–481.[CrossRef]
    [Google Scholar]
  19. Schobert, M. & Görisch, H. ( 2001; ). A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c 550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147, 363–372.
    [Google Scholar]
  20. Springer, A. L., Chou, H. H., Fan, W. H., Lee, E. & Lidstrom, M. E. ( 1995; ). Methanol oxidation mutants in Methylobacterium extorquens AM1: identification of new genetic complementation groups. Microbiology 141, 2985–2993.[CrossRef]
    [Google Scholar]
  21. Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. & Adachi, O. ( 1995; ). Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177, 2442–2450.
    [Google Scholar]
  22. Toyama, H., Fujii, T., Aoki, N., Matsushita, K. & Adachi, O. ( 2003; ). Molecular cloning of quinohemoprotein alcohol dehydrogenase, ADH IIB, from Pseudomonas putida HK5. Biosci Biotechnol Biochem 67, 1397–1400.[CrossRef]
    [Google Scholar]
  23. Toyama, H., Mathews, F. S., Adachi, O. & Matsushita, K. ( 2004; ). Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys 428, 10–21.[CrossRef]
    [Google Scholar]
  24. Toyama, H., Chen, Z. W., Fukumoto, M., Adachi, O., Matsushita, K. & Mathews, F. S. ( 2005; ). Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADH-IIG from Pseudomonas putida HK5. J Mol Biol 352, 91–104.[CrossRef]
    [Google Scholar]
  25. Vangnai, A. S., Arp, D. J. & Sayavedra-Soto, L. A. ( 2002; ). Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora. J Bacteriol 184, 1916–1924.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021956-0
Loading
/content/journal/micro/10.1099/mic.0.021956-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error