1887

Abstract

Bacteria in the food chain mostly live in communities associated with surfaces known as biofilms, which confer specific survival and adaptive abilities. In such communities, the bacteria mostly exhibit higher tolerance to external stress, and their recurrent exposure along the food chain to biocides used during cleaning and disinfection procedures raises concern about the adaptation routes they develop, both at single-cell and communal levels. In recent years, an increasing number of research subjects have focused on understanding the specific features of biofilms that enable bacterial populations to adapt to biocide exposure within a ‘protective cocoon’. The first part of this review concentrates on the diversity of adaptive strategies, including structural modulation of these biofilms, physiological response or the acquisition of genetic resistance. The second part discusses the possible side effects of biofilm adaptation to biocides on antimicrobial cross-resistance, virulence and colonization features from a One Health perspective.

Funding
This study was supported by the:
  • Anses-INRAE doctoral fellowship
    • Principle Award Recipient: RaphaelCharron
  • Agence Nationale de la Recherche (Award ANR-21-CE35-0001)
    • Principle Award Recipient: ArnaudBridier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001340
2023-06-02
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/6/mic001340.html?itemId=/content/journal/micro/10.1099/mic.0.001340&mimeType=html&fmt=ahah

References

  1. Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol 2022; 20:257–269 [View Article] [PubMed]
    [Google Scholar]
  2. Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 2016; 7:1881 [View Article] [PubMed]
    [Google Scholar]
  3. Avershina E, Shapovalova V, Shipulin G. Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy. Front Microbiol 2021; 12:707330 [View Article] [PubMed]
    [Google Scholar]
  4. Butucel E, Balta I, Ahmadi M, Dumitrescu G, Morariu F et al. Biocides as biomedicines against foodborne pathogenic bacteria. Biomedicines 2022; 10:379 [View Article] [PubMed]
    [Google Scholar]
  5. Maillard J-Y. Resistance of Bacteria to Biocides. Microbiol Spectr 2018; 6: [View Article] [PubMed]
    [Google Scholar]
  6. Zou L, Meng J, McDermott PF, Wang F, Yang Q et al. Presence of disinfectant resistance genes in Escherichia coli isolated from retail meats in the USA. J Antimicrob Chemother 2014; 69:2644–2649 [View Article] [PubMed]
    [Google Scholar]
  7. Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Biocide-induced emergence of antibiotic resistance in Escherichia coli. Front Microbiol 2021; 12:640923 [View Article] [PubMed]
    [Google Scholar]
  8. Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ et al. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother 2015; 70:2241–2248 [View Article] [PubMed]
    [Google Scholar]
  9. Kampf G. Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics 2018; 7:110 [View Article] [PubMed]
    [Google Scholar]
  10. Douarre P-E, Sévellec Y, Le Grandois P, Soumet C, Bridier A et al. FepR as a central genetic target in the adaptation to quaternary ammonium compounds and cross-resistance to ciprofloxacin in Listeria monocytogenes. Front Microbiol 2022; 13:864576 [View Article] [PubMed]
    [Google Scholar]
  11. Amsalu A, Sapula SA, De Barros Lopes M, Hart BJ, Nguyen AH et al. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: a case study in the development of multidrug resistance in environmental hotspots. Microorganisms 2020; 8:1647 [View Article] [PubMed]
    [Google Scholar]
  12. Sonbol FI, El-Banna TE, Abd El-Aziz AA, El-Ekhnawy E. Impact of triclosan adaptation on membrane properties, efflux and antimicrobial resistance of Escherichia coli clinical isolates. J Appl Microbiol 2019; 126:730–739 [View Article] [PubMed]
    [Google Scholar]
  13. Tong C, Hu H, Chen G, Li Z, Li A et al. Chlorine disinfectants promote microbial resistance in Pseudomonas sp. Environ Res 2021; 199:111296 [View Article] [PubMed]
    [Google Scholar]
  14. Kim M, Weigand MR, Oh S, Hatt JK, Krishnan R et al. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl Environ Microbiol 2018; 84:e01201-18 [View Article] [PubMed]
    [Google Scholar]
  15. Cuzin C, Houée P, Lucas P, Blanchard Y, Soumet C et al. Selection of a gentamicin-resistant variant following polyhexamethylene biguanide (PHMB) exposure in Escherichia coli biofilms. Antibiotics (Basel) 2021; 10:553 [View Article] [PubMed]
    [Google Scholar]
  16. Flemming H-C, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70–86 [View Article] [PubMed]
    [Google Scholar]
  17. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 2020; 28:668–681 [View Article] [PubMed]
    [Google Scholar]
  18. Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics (Basel) 2020; 10:3 [View Article] [PubMed]
    [Google Scholar]
  19. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 2011; 27:1017–1032 [View Article] [PubMed]
    [Google Scholar]
  20. Koechler S, Farasin J, Cleiss-Arnold J, Arsène-Ploetze F. Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 2015; 166:764–773 [View Article] [PubMed]
    [Google Scholar]
  21. Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593–607 [View Article] [PubMed]
    [Google Scholar]
  22. Ayrapetyan M, Williams TC, Oliver JD. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 2015; 23:7–13 [View Article] [PubMed]
    [Google Scholar]
  23. Ciofu O, Moser C, Jensen , Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621–635 [View Article] [PubMed]
    [Google Scholar]
  24. Bridier A, Piard J-C, Pandin C, Labarthe S, Dubois-Brissonnet F et al. Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbiol 2017; 8:1364 [View Article] [PubMed]
    [Google Scholar]
  25. Campoccia D, Montanaro L, Arciola CR. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture. Int J Mol Sci 2021; 22:9100 [View Article] [PubMed]
    [Google Scholar]
  26. Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 2012; 85:51–66 [View Article] [PubMed]
    [Google Scholar]
  27. Davison WM, Pitts B, Stewart PS. Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 2010; 54:2920–2927 [View Article] [PubMed]
    [Google Scholar]
  28. Bridier A, Dubois-Brissonnet F, Greub G, Thomas V, Briandet R. Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2011; 55:2648–2654 [View Article] [PubMed]
    [Google Scholar]
  29. Bridier A, Sanchez-Vizuete MDP, Le Coq D, Aymerich S, Meylheuc T et al. Biofilms of a bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action. PLoS One 2012; 7:e44506 [View Article] [PubMed]
    [Google Scholar]
  30. Epstein AK, Pokroy B, Seminara A, Aizenberg J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci 2011; 108:995–1000 [View Article] [PubMed]
    [Google Scholar]
  31. Bas S, Kramer M, Stopar D. Biofilm surface density determines biocide effectiveness. Front Microbiol 2017; 8:2443 [View Article] [PubMed]
    [Google Scholar]
  32. Shemesh M, Kolter R, Losick R. The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J Bacteriol 2010; 192:6352–6356 [View Article] [PubMed]
    [Google Scholar]
  33. Henly EL, Dowling JAR, Maingay JB, Lacey MM, Smith TJ et al. Biocide exposure induces changes in Susceptibility, Pathogenicity, and Biofilm Formation in Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2019; 63:e01892-18 [View Article] [PubMed]
    [Google Scholar]
  34. Capita R, Riesco-Peláez F, Alonso-Hernando A, Alonso-Calleja C. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl Environ Microbiol 2014; 80:1268–1280 [View Article] [PubMed]
    [Google Scholar]
  35. Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Short- and long-term transcriptomic responses of Escherichia coli to biocides: a systems analysis. Appl Environ Microbiol 2020; 86:e00708-20 [View Article] [PubMed]
    [Google Scholar]
  36. Singkham-In U, Phuengmaung P, Makjaroen J, Saisorn W, Bhunyakarnjanarat T et al. Chlorhexidine promotes Psl expression in Pseudomonas aeruginosa that enhances cell aggregation with preserved pathogenicity demonstrates an adaptation against antiseptic. Int J Mol Sci 2022; 23:8308 [View Article] [PubMed]
    [Google Scholar]
  37. Campoccia D, Montanaro L, Arciola CR. Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit. Biofouling 2021; 37:1022–1039 [View Article] [PubMed]
    [Google Scholar]
  38. Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 2021; 118:2129–2141 [View Article] [PubMed]
    [Google Scholar]
  39. Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci 2015; 112:11353–11358 [View Article] [PubMed]
    [Google Scholar]
  40. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 2013; 15:2865–2878 [View Article] [PubMed]
    [Google Scholar]
  41. Chiang W-C, Nilsson M, Jensen , Høiby N, Nielsen TE et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2013; 57:2352–2361 [View Article] [PubMed]
    [Google Scholar]
  42. Moshynets OV, Baranovskyi TP, Iungin OS, Kysil NP, Metelytsia LO et al. eDNA inactivation and biofilm inhibition by the PolymericBiocide polyhexamethylene guanidine hydrochloride (PHMG-Cl). Int J Mol Sci 2022; 23:731 [View Article] [PubMed]
    [Google Scholar]
  43. Heilmann S, Krishna S, Kerr B. Why do bacteria regulate public goods by quorum sensing?-How the shapes of cost and benefit functions determine the form of optimal regulation. Front Microbiol 2015; 6:767 [View Article] [PubMed]
    [Google Scholar]
  44. Olwal CO, Ang’ienda PO, Ochiel DO. Alternative sigma factor B (σB) and catalase enzyme contribute to Staphylococcus epidermidis biofilm’s tolerance against physico-chemical disinfection. Sci Rep 2019; 9:5355 [View Article] [PubMed]
    [Google Scholar]
  45. Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z et al. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2000; 66:836–838 [View Article] [PubMed]
    [Google Scholar]
  46. White AN, Learman BS, Brauer AL, Armbruster CE. Catalase activity is critical for Proteus mirabilis biofilm development, extracellular polymeric substance composition, and dissemination during catheter-associated urinary tract infection. Infect Immun 2021; 89:e0017721 [View Article] [PubMed]
    [Google Scholar]
  47. Scotti R, Nicolini L, Stringaro A, Gabbianelli R. A study on prophagic and chromosomal sodC genes involvement in Escherichia coli O157:H7 biofilm formation and biofilm resistance to H₂O₂. Ann Ist Super Sanita 2015; 51:62–66 [View Article] [PubMed]
    [Google Scholar]
  48. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2019; 17:371–382 [View Article] [PubMed]
    [Google Scholar]
  49. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR et al. Bacterial quorum sensing and microbial community interactions. mBio 2018; 9:e02331-17 [View Article] [PubMed]
    [Google Scholar]
  50. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev 2009; 33:206–224 [View Article] [PubMed]
    [Google Scholar]
  51. Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007; 189:5383–5386 [View Article] [PubMed]
    [Google Scholar]
  52. Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 2006; 60:1446–1456 [View Article] [PubMed]
    [Google Scholar]
  53. Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 2006; 9:133–137 [View Article] [PubMed]
    [Google Scholar]
  54. Vestby LK, Lönn-Stensrud J, Møretrø T, Langsrud S, Aamdal-Scheie A et al. A synthetic furanone potentiates the effect of disinfectants on Salmonella in biofilm. J Appl Microbiol 2010; 108:771–778 [View Article] [PubMed]
    [Google Scholar]
  55. Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 1999; 34:1082–1093 [View Article] [PubMed]
    [Google Scholar]
  56. Gholamrezazadeh M, Shakibaie MR, Monirzadeh F, Masoumi S, Hashemizadeh Z. Effect of nano-silver, nano-copper, deconex and benzalkonium chloride on biofilm formation and expression of transcription regulatory quorum sensing gene (rh1R) in drug-resistance Pseudomonas aeruginosa burn isolates. Burns 2018; 44:700–708 [View Article] [PubMed]
    [Google Scholar]
  57. Winans JB, Wucher BR, Nadell CD. Multispecies biofilm architecture determines bacterial exposure to phages. PLoS Biol 2022; 20:e3001913 [View Article] [PubMed]
    [Google Scholar]
  58. Booth SC, Rice SA. Influence of interspecies interactions on the spatial organization of dual species bacterial communities. Biofilm 2020; 2:100035 [View Article] [PubMed]
    [Google Scholar]
  59. Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J 2014; 8:894–907 [View Article] [PubMed]
    [Google Scholar]
  60. Sanchez-Vizuete P, Le Coq D, Bridier A, Herry J-M, Aymerich S et al. Identification of ypqP as a new Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities. Appl Environ Microbiol 2015; 81:109–118 [View Article] [PubMed]
    [Google Scholar]
  61. Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 2015; 6:705 [View Article] [PubMed]
    [Google Scholar]
  62. Pang XY, Yang YS, Yuk HG. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa. J Appl Microbiol 2017; 123:651–660 [View Article] [PubMed]
    [Google Scholar]
  63. Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 2006; 72:3916–3923 [View Article] [PubMed]
    [Google Scholar]
  64. Vacheva A, Ivanova R, Paunova-Krasteva T, Stoitsova S. Released products of pathogenic bacteria stimulate biofilm formation by Escherichia coli K-12 strains. Antonie Van Leeuwenhoek 2012; 102:105–119 [View Article] [PubMed]
    [Google Scholar]
  65. Özkaya Ö, Xavier KB, Dionisio F, Balbontín R, O’Toole G. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J Bacteriol 2017; 199:e00297-17 [View Article] [PubMed]
    [Google Scholar]
  66. Hagelueken G, Adams TM, Wiehlmann L, Widow U, Kolmar H et al. The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases. Proc Natl Acad Sci 2006; 103:7631–7636 [View Article] [PubMed]
    [Google Scholar]
  67. López D, Vlamakis H, Losick R, Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 2009; 74:609–618 [View Article] [PubMed]
    [Google Scholar]
  68. Houry A, Gohar M, Deschamps J, Tischenko E, Aymerich S et al. Bacterial swimmers that infiltrate and take over the biofilm matrix. Proc Natl Acad Sci 2012; 109:13088–13093 [View Article] [PubMed]
    [Google Scholar]
  69. Ravel G, Bergmann M, Trubuil A, Deschamps J, Briandet R et al. Inferring characteristics of bacterial swimming in biofilm matrix from time-lapse confocal laser scanning microscopy. Elife 2022; 11:e76513 [View Article] [PubMed]
    [Google Scholar]
  70. Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci 2004; 101:16630–16635 [View Article] [PubMed]
    [Google Scholar]
  71. Maillard J-Y. Bacterial target sites for biocide action. J Appl Microbiol 2002; 92:16S–27S [PubMed]
    [Google Scholar]
  72. Fernandes S, Gomes IB, Sousa SF, Simões M. Antimicrobial susceptibility of persister biofilm cells of Bacillus cereus and Pseudomonas fluorescens. Microorganisms 2022; 10:160 [View Article]
    [Google Scholar]
  73. Noll M, Trunzer K, Vondran A, Vincze S, Dieckmann R et al. Benzalkonium chloride induces a VBNC state in Listeria monocytogenes. Microorganisms 2020; 8:184 [View Article] [PubMed]
    [Google Scholar]
  74. Robben C, Fister S, Witte AK, Schoder D, Rossmanith P et al. Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts. Sci Rep 2018; 8:15132 [View Article] [PubMed]
    [Google Scholar]
  75. Wilmaerts D, Windels EM, Verstraeten N, Michiels J. General mechanisms leading to persister formation and awakening. Trends Genet 2019; 35:401–411 [View Article] [PubMed]
    [Google Scholar]
  76. Kushwaha GS, Oyeyemi BF, Bhavesh NS. Stringent response protein as a potential target to intervene persistent bacterial infection. Biochimie 2019; 165:67–75 [View Article] [PubMed]
    [Google Scholar]
  77. Pacios O, Blasco L, Bleriot I, Fernandez-Garcia L, Ambroa A et al. (p)ppGpp and its role in bacterial persistence: new challenges. Antimicrob Agents Chemother 2020; 64:e01283-20 [View Article] [PubMed]
    [Google Scholar]
  78. Yin W-L, Xie Z-Y, Zeng Y-H, Zhang J, Long H et al. Two (p)ppGpp synthetase genes, relA and spoT, are involved in regulating cell motility, exopolysaccharides production, and biofilm formation of Vibrio alginolyticus. Front Microbiol 2022; 13:858559 [View Article] [PubMed]
    [Google Scholar]
  79. Kim H-M, Davey ME. Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. NPJ Biofilms Microbiomes 2020; 6:5 [View Article] [PubMed]
    [Google Scholar]
  80. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011; 334:982–986 [View Article] [PubMed]
    [Google Scholar]
  81. Ortega Morente E, Fernández-Fuentes MA, Grande Burgos MJ, Abriouel H, Pérez Pulido R et al. Biocide tolerance in bacteria. Int J Food Microbiol 2013; 162:13–25 [View Article] [PubMed]
    [Google Scholar]
  82. Du Z, Nandakumar R, Nickerson KW, Li X. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance. Water Res 2015; 69:110–119 [View Article] [PubMed]
    [Google Scholar]
  83. Zhang S-P, Feng H-Z, Wang Q, Quan S-W, Yu X-Q et al. Proteomic analysis reveals the mechanism of different environmental stress-induced tolerance of Pseudomonas aeruginosa to monochloramine disinfection. J Hazard Mater 2021; 417:126082 [View Article] [PubMed]
    [Google Scholar]
  84. Fortuna A, Collalto D, Schiaffi V, Pastore V, Visca P et al. The Pseudomonas aeruginosa DksA1 protein is involved in H₂O₂ tolerance and within-macrophages survival and can be replaced by DksA2. Sci Rep 2022; 12:10404 [View Article]
    [Google Scholar]
  85. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013; 195:2011–2020 [View Article] [PubMed]
    [Google Scholar]
  86. Bhardwaj P, Hans A, Ruikar K, Guan Z, Palmer KL. Reduced chlorhexidine and daptomycin susceptibility in vancomycin-resistant Enterococcus faecium after serial chlorhexidine exposure. Antimicrob Agents Chemother 2018; 62:e01235-17 [View Article] [PubMed]
    [Google Scholar]
  87. Nordholt N, Kanaris O, Schmidt SBI, Schreiber F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021; 12:6792 [View Article] [PubMed]
    [Google Scholar]
  88. Podlesek Z, Žgur Bertok D. The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Front Microbiol 2020; 11:1785 [View Article] [PubMed]
    [Google Scholar]
  89. Durfee T, Hansen A-M, Zhi H, Blattner FR, Jin DJ. Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 2008; 190:1084–1096 [View Article] [PubMed]
    [Google Scholar]
  90. Allen MJ, White GF, Morby AP. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology (Reading) 2006; 152:989–1000 [View Article] [PubMed]
    [Google Scholar]
  91. Ceragioli M, Mols M, Moezelaar R, Ghelardi E, Senesi S et al. Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl Environ Microbiol 2010; 76:3352–3360 [View Article] [PubMed]
    [Google Scholar]
  92. Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 2010; 11:90 [View Article] [PubMed]
    [Google Scholar]
  93. Wang S, Xiao X, Qiu M, Wang W, Xiao Y et al. Transcriptomic responses of Salmonella enterica serovars enteritidis in sodium hypochlorite. Front Cell Infect Microbiol 2022; 12:853064 [View Article] [PubMed]
    [Google Scholar]
  94. Gerdes K, Maisonneuve E. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 2012; 66:103–123 [View Article] [PubMed]
    [Google Scholar]
  95. Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8:e1000317 [View Article] [PubMed]
    [Google Scholar]
  96. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 2009; 323:396–401 [View Article] [PubMed]
    [Google Scholar]
  97. Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell 2013; 52:248–254 [View Article] [PubMed]
    [Google Scholar]
  98. Karimaei S, Kazem Aghamir SM, Foroushani AR, Pourmand MR. Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathog 2021; 159:105126 [View Article] [PubMed]
    [Google Scholar]
  99. Chan W, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C et al. n.d. The Streptococcus pneumoniae yefM-yoeB and relBE toxin-antitoxin operons participate in oxidative stress and biofilm formation. Toxins 10:378 [View Article]
    [Google Scholar]
  100. Sun C, Guo Y, Tang K, Wen Z, Li B et al. MqsR/MqsA toxin/antitoxin system regulates persistence and biofilm formation in Pseudomonas putida KT2440. Front Microbiol 2017; 8:840 [View Article] [PubMed]
    [Google Scholar]
  101. Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 2011; 77:5577–5583 [View Article] [PubMed]
    [Google Scholar]
  102. Bleriot I, Blasco L, Delgado-Valverde M, Gual de Torella A, Ambroa A et al. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins 2020; 12:566 [View Article] [PubMed]
    [Google Scholar]
  103. Fernández-García L, Fernandez-Cuenca F, Blasco L, López-Rojas R, Ambroa A et al. Relationship between tolerance and persistence mechanisms in acinetobacter baumannii strains with AbkAB toxin-antitoxin system. Antimicrob Agents Chemother 2018; 62:e00250-18 [View Article] [PubMed]
    [Google Scholar]
  104. Pu Y, Zhao Z, Li Y, Zou J, Ma Q et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 2016; 62:284–294 [View Article] [PubMed]
    [Google Scholar]
  105. Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 2018; 73:2003–2020 [View Article] [PubMed]
    [Google Scholar]
  106. Kvist M, Hancock V, Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 2008; 74:7376–7382 [View Article] [PubMed]
    [Google Scholar]
  107. Bay DC, Stremick CA, Slipski CJ, Turner RJ. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 2017; 168:208–221 [View Article] [PubMed]
    [Google Scholar]
  108. Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J Med Microbiol 2022; 71:001496 [View Article] [PubMed]
    [Google Scholar]
  109. Yamasaki S, Wang L-Y, Hirata T, Hayashi-Nishino M, Nishino K. Multidrug efflux pumps contribute to Escherichia coli biofilm maintenance. Int J Antimicrob Agents 2015; 45:439–441 [View Article] [PubMed]
    [Google Scholar]
  110. Richmond GE, Evans LP, Anderson MJ, Wand ME, Bonney LC et al. The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation and virulence in a strain-specific manner. mBio 2016; 7:e00852-16 [View Article] [PubMed]
    [Google Scholar]
  111. Gillis RJ, White KG, Choi K-H, Wagner VE, Schweizer HP et al. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2005; 49:3858–3867 [View Article] [PubMed]
    [Google Scholar]
  112. Fraud S, Campigotto AJ, Chen Z, Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 2008; 52:4478–4482 [View Article] [PubMed]
    [Google Scholar]
  113. Migliaccio A, Esposito EP, Bagattini M, Berisio R, Triassi M et al. Inhibition of AdeB, AceI, and AmvA efflux pumps restores chlorhexidine and benzalkonium susceptibility in Acinetobacter baumannii ATCC 19606. Front Microbiol 2021; 12:790263 [View Article] [PubMed]
    [Google Scholar]
  114. Short FL, Liu Q, Shah B, Clift HE, Naidu V et al. The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump. Commun Biol 2021; 4:1114 [View Article] [PubMed]
    [Google Scholar]
  115. LaBreck PT, Bochi-Layec AC, Stanbro J, Dabbah-Krancher G, Simons MP et al. Systematic analysis of efflux pump-mediated antiseptic resistance in Staphylococcus aureus suggests a need for greater antiseptic stewardship. mSphere 2020; 5:e00959-19 [View Article] [PubMed]
    [Google Scholar]
  116. Truong-Bolduc QC, Wang Y, Reedy JL, Vyas JM, Hooper DC. Staphylococcus aureus efflux pumps and tolerance to ciprofloxacin and chlorhexidine following induction by mupirocin. Antimicrob Agents Chemother 2022; 66:e0184521 [View Article] [PubMed]
    [Google Scholar]
  117. Zimmermann S, Klinger-Strobel M, Bohnert JA, Wendler S, Rödel J et al. Clinically approved drugs inhibit the Staphylococcus aureus multidrug NorA efflux pump and reduce biofilm formation. Front Microbiol 2019; 10:2762 [View Article] [PubMed]
    [Google Scholar]
  118. Kovacevic J, Ziegler J, Wałecka-Zacharska E, Reimer A, Kitts DD et al. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 2016; 82:939–953 [View Article] [PubMed]
    [Google Scholar]
  119. Matsumura K, Furukawa S, Ogihara H, Morinaga Y. Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 2011; 16:69–72 [View Article] [PubMed]
    [Google Scholar]
  120. Slipski CJ, Jamieson TR, Zhanel GG, Bay DC. Riboswitch-associated guanidinium-selective efflux pumps frequently transmitted on proteobacterial plasmids increase Escherichia coli biofilm tolerance to disinfectants. J Bacteriol 2020; 202:e00104-20 [View Article] [PubMed]
    [Google Scholar]
  121. Vergalli J, Bodrenko IV, Masi M, Moynié L, Acosta-Gutiérrez S et al. Porins and small-molecule translocation across the outer membrane of gram-negative bacteria. Nat Rev Microbiol 2020; 18:164–176 [View Article] [PubMed]
    [Google Scholar]
  122. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article] [PubMed]
    [Google Scholar]
  123. Orme R, Douglas CWI, Rimmer S, Webb M. Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics 2006; 6:4269–4277 [View Article] [PubMed]
    [Google Scholar]
  124. Gao J, Han Z, Li P, Zhang H, Du X et al. Outer membrane protein F is involved in biofilm formation, virulence and antibiotic resistance in Cronobacter sakazakii. Microorganisms 2021; 9:2338 [View Article] [PubMed]
    [Google Scholar]
  125. Sauer K. The genomics and proteomics of biofilm formation. Genome Biol 2003; 4:219 [View Article] [PubMed]
    [Google Scholar]
  126. El-Khatib M, Nasrallah C, Lopes J, Tran Q-T, Tetreau G et al. Porin self-association enables cell-to-cell contact in Providencia stuartii floating communities. Proc Natl Acad Sci 2018; 115:E2220–E2228 [View Article] [PubMed]
    [Google Scholar]
  127. Whitfield GB, Marmont LS, Ostaszewski A, Rich JD, Whitney JC et al. Pel polysaccharide biosynthesis requires an inner membrane complex comprised of PelD, PelE, PelF, and PelG. J Bacteriol 2020; 202:e00684-19 [View Article] [PubMed]
    [Google Scholar]
  128. Bore E, Hébraud M, Chafsey I, Chambon C, Skjæret C et al. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology (Reading) 2007; 153:935–946 [View Article] [PubMed]
    [Google Scholar]
  129. Fernández-Cuenca F, Tomás M, Caballero-Moyano F-J, Bou G, Martínez-Martínez L et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother 2015; 70:3222–3229 [View Article] [PubMed]
    [Google Scholar]
  130. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N et al. Antibiotic tolerance facilitates the evolution of resistance. Science 2017; 355:826–830 [View Article] [PubMed]
    [Google Scholar]
  131. Levin-Reisman I, Brauner A, Ronin I, Balaban NQ. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci 2019; 116:14734–14739 [View Article] [PubMed]
    [Google Scholar]
  132. Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: phenomena and mechanisms. Environ Pollut 2022; 307:119603 [View Article] [PubMed]
    [Google Scholar]
  133. Windels EM, Michiels JE, Fauvart M, Wenseleers T, Van den Bergh B et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J 2019; 13:1239–1251 [View Article] [PubMed]
    [Google Scholar]
  134. Crane JK, Alvarado CL, Sutton MD. Role of the SOS response in the generation of antibiotic resistance in vivo. Antimicrob Agents Chemother 2021; 65:e0001321 [View Article] [PubMed]
    [Google Scholar]
  135. Meunier A, Nerich V, Fagnoni-Legat C, Richard M, Mazel D et al. Enhanced emergence of antibiotic-resistant pathogenic bacteria after in vitro induction with cancer chemotherapy drugs. J Antimicrob Chemother 2019; 74:1572–1577 [View Article] [PubMed]
    [Google Scholar]
  136. Händel N, Hoeksema M, Freijo Mata M, Brul S, ter Kuile BH. Effects of stress, reactive oxygen species, and the SOS response on De Novo acquisition of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother 2015; 60:1319–1327 [View Article] [PubMed]
    [Google Scholar]
  137. Schmidt SBI, Rodríguez-Rojas A, Rolff J, Schreiber F. Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria. J Hazard Mater 2022; 437:129280 [View Article] [PubMed]
    [Google Scholar]
  138. Russell AD. Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemother 2003; 52:750–763 [View Article] [PubMed]
    [Google Scholar]
  139. Ryder VJ, Chopra I, O’Neill AJ. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One 2012; 7:e47695 [View Article] [PubMed]
    [Google Scholar]
  140. Qi L, Wu X-C, Zheng D-Q. Hydrogen peroxide, a potent inducer of global genomic instability. Curr Genet 2019; 65:913–917 [View Article] [PubMed]
    [Google Scholar]
  141. El Meouche I, Dunlop MJ. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science 2018; 362:686–690 [View Article] [PubMed]
    [Google Scholar]
  142. Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Bacterial cooperation through horizontal gene transfer. Trends Ecol Evol 2022; 37:223–232 [View Article] [PubMed]
    [Google Scholar]
  143. Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:fiaa031 [View Article] [PubMed]
    [Google Scholar]
  144. Stalder T, Cornwell B, Lacroix J, Kohler B, Dixon S et al. Evolving populations in biofilms contain more persistent plasmids. Mol Biol Evol 2020; 37:1563–1576 [View Article] [PubMed]
    [Google Scholar]
  145. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004; 427:72–74 [View Article] [PubMed]
    [Google Scholar]
  146. Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 2010; 6:e1001165 [View Article] [PubMed]
    [Google Scholar]
  147. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012; 65:183–195 [View Article] [PubMed]
    [Google Scholar]
  148. Røder HL, Trivedi U, Russel J, Kragh KN, Herschend J et al. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. NPJ Biofilms Microbiomes 2021; 7:78 [View Article] [PubMed]
    [Google Scholar]
  149. Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001; 412:442–445 [View Article] [PubMed]
    [Google Scholar]
  150. May T, Okabe S. Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and Curli. J Bacteriol 2008; 190:7479–7490 [View Article] [PubMed]
    [Google Scholar]
  151. Russell AD. Plasmids and bacterial resistance to biocides. J Appl Microbiol 1997; 83:155–165 [View Article] [PubMed]
    [Google Scholar]
  152. LaBreck PT, Rice GK, Paskey AC, Elassal EM, Cer RZ et al. Conjugative transfer of a novel Staphylococcal plasmid encoding the biocide resistance gene, qacA. Front Microbiol 2018; 9:2664 [View Article] [PubMed]
    [Google Scholar]
  153. Kropac AC, Eshwar AK, Stephan R, Tasara T. New insights on the role of the pLMST6 plasmid in Listeria monocytogenes biocide tolerance and virulence. Front Microbiol 2019; 10:1538 [View Article] [PubMed]
    [Google Scholar]
  154. Vijayakumar R, Sandle T. A review on biocide reduced susceptibility due to plasmid-borne antiseptic-resistant genes-special notes on pharmaceutical environmental isolates. J Appl Microbiol 2019; 126:1011–1022 [View Article] [PubMed]
    [Google Scholar]
  155. Roedel A, Vincze S, Projahn M, Roesler U, Robé C et al. Genetic but no phenotypic associations between biocide tolerance and antibiotic resistance in Escherichia coli from German broiler fattening farms. Microorganisms 2021; 9:651 [View Article] [PubMed]
    [Google Scholar]
  156. Zhang Y, Gu AZ, He M, Li D, Chen J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol 2017; 51:570–580 [View Article] [PubMed]
    [Google Scholar]
  157. Li Y-H, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG. Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001; 183:897–908 [View Article] [PubMed]
    [Google Scholar]
  158. Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect 2015; 17:531–537 [View Article] [PubMed]
    [Google Scholar]
  159. Jones IA, Joshi LT. Biocide use in the antimicrobial era: a review. Molecules 2021; 26:2276 [View Article] [PubMed]
    [Google Scholar]
  160. Itzek A, Zheng L, Chen Z, Merritt J, Kreth J. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 2011; 193:6912–6922 [View Article] [PubMed]
    [Google Scholar]
  161. Hannan S, Ready D, Jasni AS, Rogers M, Pratten J et al. Transfer of antibiotic resistance by transformation with eDNA within oral biofilms. FEMS Immunol Med Microbiol 2010; 59:345–349 [View Article] [PubMed]
    [Google Scholar]
  162. Liu S-S, Qu H-M, Yang D, Hu H, Liu W-L et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res 2018; 136:131–136 [View Article] [PubMed]
    [Google Scholar]
  163. Olivares Pacheco J, Alvarez-Ortega C, Alcalde Rico M, Martínez JL, Davies JE. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 2017; 8:e00500-17 [View Article] [PubMed]
    [Google Scholar]
  164. San Millan A, MacLean RC, Baquero F, Bouza E, Gutiérrez-Fuentes JA. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  165. Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes 2021; 7:80 [View Article] [PubMed]
    [Google Scholar]
  166. France MT, Cornea A, Kehlet-Delgado H, Forney LJ. Spatial structure facilitates the accumulation and persistence of antibiotic-resistant mutants in biofilms. Evol Appl 2019; 12:498–507 [View Article] [PubMed]
    [Google Scholar]
  167. Jacques M, Malouin F. One health-one biofilm. Vet Res 2022; 53:51 [View Article] [PubMed]
    [Google Scholar]
  168. Rodríguez-Melcón C, Riesco-Peláez F, García-Fernández C, Alonso-Calleja C, Capita R. Susceptibility of Listeria monocytogenes planktonic cultures and biofilms to sodium hypochlorite and benzalkonium chloride. Food Microbiol 2019; 82:533–540 [View Article] [PubMed]
    [Google Scholar]
  169. Capita R, Vicente-Velasco M, Rodríguez-Melcón C, García-Fernández C, Carballo J et al. Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci Rep 2019; 9:15905 [View Article] [PubMed]
    [Google Scholar]
  170. Zhang Y, Ge H, Lin W, Song Y, Ge F et al. Effect of different disinfection treatments on the adhesion and separation of biofilm on stainless steel surface. Water Sci Technol 2021; 83:877–885 [View Article] [PubMed]
    [Google Scholar]
  171. Techaruvichit P, Takahashi H, Kuda T, Miya S, Keeratipibul S et al. Adaptation of Campylobacter jejuni to biocides used in the food industry affects biofilm structure, adhesion strength, and cross-resistance to clinical antimicrobial compounds. Biofouling 2016; 32:827–839 [View Article] [PubMed]
    [Google Scholar]
  172. Daer S, Goodwill JE, Ikuma K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase. Water Res 2021; 189:116580 [View Article] [PubMed]
    [Google Scholar]
  173. Slany M, Oppelt J, Cincarova L. Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants studied via a transcriptomic analysis using transcriptome sequencing (RNA-seq). Appl Environ Microbiol 2017; 83:e01643-17 [View Article] [PubMed]
    [Google Scholar]
  174. Forbes S, Morgan N, Humphreys GJ, Amézquita A, Mistry H et al. Loss of function in Escherichia coli exposed to environmentally relevant concentrations of benzalkonium chloride. Appl Environ Microbiol 2019; 85:e02417-18 [View Article] [PubMed]
    [Google Scholar]
  175. Romeu MJ, Rodrigues D, Azeredo J. Effect of sub-lethal chemical disinfection on the biofilm forming ability, resistance to antibiotics and expression of virulence genes of Salmonella Enteritidis biofilm-surviving cells. Biofouling 2020; 36:101–112 [View Article] [PubMed]
    [Google Scholar]
  176. Langsrud S, Sundheim G, Holck AL. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J Appl Microbiol 2004; 96:201–208 [View Article] [PubMed]
    [Google Scholar]
  177. Pagedar A, Singh J, Batish VK. Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. J Basic Microbiol 2011; 51:289–295 [View Article] [PubMed]
    [Google Scholar]
  178. Tattawasart U, Maillard J-Y, Furr JR, Russell AD. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int J Antimicrob Agents 2000; 16:233–238 [View Article] [PubMed]
    [Google Scholar]
  179. Gadea R, Fernández Fuentes , Pérez Pulido R, Gálvez A, Ortega E. Adaptive tolerance to phenolic biocides in bacteria from organic foods: effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res Int 2016; 85:131–143 [View Article] [PubMed]
    [Google Scholar]
  180. Russell AD, Tattawasart U, Maillard JY, Furr JR. Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob Agents Chemother 1998; 42:2151 [View Article] [PubMed]
    [Google Scholar]
  181. Chen L, Chavda KD, Fraimow HS, Mediavilla JR, Melano RG et al. Complete nucleotide sequences of blaKPC-4- and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob Agents Chemother 2013; 57:269–276 [View Article] [PubMed]
    [Google Scholar]
  182. Kücken D, Feucht H, Kaulfers P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of gram-negative bacteria. FEMS Microbiol Lett 2000; 183:95–98 [View Article] [PubMed]
    [Google Scholar]
  183. Cottell A, Denyer SP, Hanlon GW, Ochs D, Maillard J-Y. Triclosan-tolerant bacteria: changes in susceptibility to antibiotics. J Hosp Infect 2009; 72:71–76 [View Article] [PubMed]
    [Google Scholar]
  184. Futoma-Kołoch B, Dudek B, Kapczyńska K, Krzyżewska E, Wańczyk M et al. Relationship of triamine-biocide tolerance of Salmonella enterica serovar Senftenberg to antimicrobial susceptibility, serum resistance and outer membrane proteins. Int J Mol Sci 2017; 18:1459 [View Article] [PubMed]
    [Google Scholar]
  185. Li M, He Y, Sun J, Li J, Bai J et al. Chronic exposure to an environmentally relevant triclosan concentration induces persistent triclosan resistance but reversible antibiotic tolerance in Escherichia coli. Environ Sci Technol 2019; 53:3277–3286 [View Article] [PubMed]
    [Google Scholar]
  186. Adkin P, Hitchcock A, Smith LJ, Walsh SE. Priming with biocides: a pathway to antibiotic resistance?. J Appl Microbiol 2022; 133:830–841 [View Article] [PubMed]
    [Google Scholar]
  187. Knapp L, Rushton L, Stapleton H, Sass A, Stewart S et al. The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 2013; 115:1117–1126 [View Article] [PubMed]
    [Google Scholar]
  188. Curiao T, Marchi E, Grandgirard D, León-Sampedro R, Viti C et al. Multiple adaptive routes of Salmonella enterica typhimurium to biocide and antibiotic exposure. BMC Genomics 2016; 17:491 [View Article] [PubMed]
    [Google Scholar]
  189. Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol 2015; 23:401–407 [View Article] [PubMed]
    [Google Scholar]
  190. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009; 69:1555–1623 [View Article] [PubMed]
    [Google Scholar]
  191. Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM et al. The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 2006; 8:847–856 [View Article] [PubMed]
    [Google Scholar]
  192. Webber MA, Bailey AM, Blair JMA, Morgan E, Stevens MP et al. The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 2009; 191:4276–4285 [View Article] [PubMed]
    [Google Scholar]
  193. Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol 2016; 7:1483 [View Article] [PubMed]
    [Google Scholar]
  194. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196:109–118 [View Article] [PubMed]
    [Google Scholar]
  195. Nontaleerak B, Duang-Nkern J, Wongsaroj L, Trinachartvanit W, Romsang A et al. Roles of RcsA, an AhpD family protein, in reactive chlorine stress resistance and virulence in Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86:e01480-20 [View Article] [PubMed]
    [Google Scholar]
  196. Randall LP, Cooles SW, Coldham NG, Penuela EG, Mott AC et al. Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother 2007; 60:1273–1280 [View Article] [PubMed]
    [Google Scholar]
  197. Karatzas KAG, Webber MA, Jorgensen F, Woodward MJ, Piddock LJV et al. Prolonged treatment of Salmonella enterica serovar typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 2007; 60:947–955 [View Article] [PubMed]
    [Google Scholar]
  198. Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 2017; 61:e01162-16 [View Article] [PubMed]
    [Google Scholar]
  199. Kremer PHC, Lees JA, Koopmans MM, Ferwerda B, Arends AWM et al. Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clin Microbiol Infect 2017; 23:265 [View Article] [PubMed]
    [Google Scholar]
  200. Karatzas KAG, Randall LP, Webber M, Piddock LJV, Humphrey TJ et al. Phenotypic and proteomic characterization of multiply antibiotic-resistant variants of Salmonella enterica serovar typhimurium selected following exposure to disinfectants. Appl Environ Microbiol 2008; 74:1508–1516 [View Article] [PubMed]
    [Google Scholar]
  201. Whitehead RN, Overton TW, Kemp CL, Webber MA. Exposure of Salmonella enterica serovar typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS One 2011; 6:e22833 [View Article] [PubMed]
    [Google Scholar]
  202. Lu J, Jin M, Nguyen SH, Mao L, Li J et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ Int 2018; 118:257–265 [View Article] [PubMed]
    [Google Scholar]
  203. Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. Sci Total Environ 2022; 832:155090 [View Article] [PubMed]
    [Google Scholar]
  204. Zhang Y, Zhao Y, Xu C, Zhang X, Li J et al. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int J Antimicrob Agents 2019; 53:864–867 [View Article] [PubMed]
    [Google Scholar]
  205. Pumbwe L, Randall LP, Woodward MJ, Piddock LJV. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob Agents Chemother 2005; 49:1289–1293 [View Article] [PubMed]
    [Google Scholar]
  206. Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 2005; 49:1857–1864 [View Article] [PubMed]
    [Google Scholar]
  207. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 2001; 45:428–432 [View Article] [PubMed]
    [Google Scholar]
  208. Morita Y, Murata T, Mima T, Shiota S, Kuroda T et al. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 2003; 51:991–994 [View Article] [PubMed]
    [Google Scholar]
  209. Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2021; 40:2349–2361 [View Article] [PubMed]
    [Google Scholar]
  210. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007; 60:145–147 [View Article] [PubMed]
    [Google Scholar]
  211. He G-X, Kuroda T, Mima T, Morita Y, Mizushima T et al. An H(+)-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 2004; 186:262–265 [View Article] [PubMed]
    [Google Scholar]
  212. Sanchez P, Moreno E, Martinez JL. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 2005; 49:781–782 [View Article] [PubMed]
    [Google Scholar]
  213. Tkachenko O, Shepard J, Aris VM, Joy A, Bello A et al. A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Res Microbiol 2007; 158:651–658 [View Article] [PubMed]
    [Google Scholar]
  214. Parikh SL, Xiao G, Tonge PJ. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 2000; 39:7645–7650 [View Article] [PubMed]
    [Google Scholar]
  215. Speck S, Wenke C, Feßler AT, Kacza J, Geber F et al. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon 2020; 6:e04070 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001340
Loading
/content/journal/micro/10.1099/mic.0.001340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error