1887

Abstract

is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the population.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001335
2023-06-05
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/6/mic001335.html?itemId=/content/journal/micro/10.1099/mic.0.001335&mimeType=html&fmt=ahah

References

  1. Dasgupta N, Arora SK, Ramphal R. The flagellar system of Pseudomonas aeruginosa. In Ramos JL. eds Pseudomonas: Volume 1 Genomics, Life Style and Molecular Architecture Boston, MA: Springer US; 2004 pp 675–698 [View Article]
    [Google Scholar]
  2. Schroth M, Cho J, Green S, Kominos S. Epidemiology of Pseudomonas aeruginosa in agricultural areas In. In Young V. eds Pseudomonas Aeruginosa: Ecological Aspects and Patient Colonization New York: Raven Press; 1977 pp 1–29
    [Google Scholar]
  3. Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T et al. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol 2007; 53:173–186 [View Article] [PubMed]
    [Google Scholar]
  4. Kimata N, Nishino T, Suzuki S, Kogure K. Pseudomonas aeruginosa isolated from marine environments in Tokyo Bay. Microb Ecol 2004; 47:41–47 [View Article] [PubMed]
    [Google Scholar]
  5. Botzenhart K, Doring G. Ecology and epidemiology of Pseudomonas aeruginosa. In Campa M, Bendinelli M, Friedman H. eds Pseudomonas Aeruginosa as an Opportunistic Pathogen Boston, MA: Springer US; 1993 pp 1–18 [View Article]
    [Google Scholar]
  6. Banerjee A, Dangar TK. Pseudomonas aeruginosa, a facultative pathogen of red palm weevil, Rhynchophorus ferrugineus. World J Microbiol Biotechnol 1995; 11:618–620 [View Article] [PubMed]
    [Google Scholar]
  7. Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates. J Appl Microbiol 2022; 132:3226–3248 [View Article] [PubMed]
    [Google Scholar]
  8. Al Bayssari C, Dabboussi F, Hamze M, Rolain J-M. Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J Antimicrob Chemother 2015; 70:950–951 [View Article] [PubMed]
    [Google Scholar]
  9. Xiong Y, Wu Q, Qin X, Yang C, Luo S et al. Identification of Pseudomonas aeruginosa from the skin ulcer disease of crocodile lizards (Shinisaurus crocodilurus) and probiotics as the control measure. Front Vet Sci 2022; 9:850684 [View Article] [PubMed]
    [Google Scholar]
  10. Ambreetha S, Marimuthu P, Mathee K, Balachandar D. Plant-associated Pseudomonas aeruginosa strains harbour multiple virulence traits critical for human infection. J Med Microbiol 2022; 71: [View Article] [PubMed]
    [Google Scholar]
  11. Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization Report: current crisis of antibiotic resistance. BioNanoSci 2019; 9:778–788 [View Article]
    [Google Scholar]
  12. AR Threats Report Antibiotic resistance threats in the United States, 2019; 2019 https://www.cdc.gov/drugresistance/biggest-threats.html accessed 4 December 2022
  13. Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 2021; 22:3128 [View Article] [PubMed]
    [Google Scholar]
  14. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [View Article] [PubMed]
    [Google Scholar]
  15. Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:15 [View Article] [PubMed]
    [Google Scholar]
  16. Qin S, Xiao W, Zhou C, Pu Q, Deng X et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig Transduct Target Ther 2022; 7: [View Article]
    [Google Scholar]
  17. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013; 41:1–20 [View Article] [PubMed]
    [Google Scholar]
  18. Gessard C. On the blue and green coloration that appears on bandages. Rev Infect Dis 1984; 6:S775–S776 [View Article]
    [Google Scholar]
  19. Radford R, Brahma A, Armstrong M, Tullo AB. Severe sclerokeratitis due to Pseudomonas aeruginosa in noncontact-lens wearers. Eye 2000; 14 (Pt 1):3–7 [View Article] [PubMed]
    [Google Scholar]
  20. Tate D, Mawer S, Newton A. Outbreak of Pseudomonas aeruginosa folliculitis associated with a swimming pool inflatable. Epidemiol Infect 2003; 130:187–192 [View Article] [PubMed]
    [Google Scholar]
  21. Doustdar F, Karimi F, Abedinyfar Z, Amoli FA, Goudarzi H. Genetic features of Pseudomonas aeruginosa isolates associated with eye infections referred to Farabi Hospital, Tehran, Iran. Int Ophthalmol 2019; 39:1581–1587 [View Article] [PubMed]
    [Google Scholar]
  22. Rosenthal VD, Bat-Erdene I, Gupta D, Belkebir S, Rajhans P et al. International Nosocomial Infection Control Consortium (INICC) report, data summary of 45 countries for 2012-2017: device-associated module. Am J Infect 2020; 48:423–432 [View Article]
    [Google Scholar]
  23. Amiel E, Lovewell RR, O’Toole GA, Hogan DA, Berwin B. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. Infect Immun 2010; 78:2937–2945 [View Article] [PubMed]
    [Google Scholar]
  24. Coleman SR, Pletzer D, Hancock REW. Contribution of swarming motility to dissemination in a Pseudomonas aeruginosa murine skin abscess infection model. J Infect Dis 2021; 224:726–733 [View Article]
    [Google Scholar]
  25. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Front Microbiol 2019; 10:913 [View Article] [PubMed]
    [Google Scholar]
  26. Conrad JC, Gibiansky M id et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 2011; 100:1608–1616 [View Article] [PubMed]
    [Google Scholar]
  27. Déziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 2001; 183:1195–1204 [View Article] [PubMed]
    [Google Scholar]
  28. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990–5996 [View Article] [PubMed]
    [Google Scholar]
  29. Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2010; 59:511–520 [View Article] [PubMed]
    [Google Scholar]
  30. Semmler ABT, Whitchurch CB, Mattick JS. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 1999; 145:2863–2873 [View Article]
    [Google Scholar]
  31. Overhage J, Bains M, Brazas MD, Hancock REW. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 2008; 190:2671–2679 [View Article] [PubMed]
    [Google Scholar]
  32. Tremblay J, Déziel E. Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 2010; 11:587 [View Article] [PubMed]
    [Google Scholar]
  33. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007; 189:3603–3612 [View Article] [PubMed]
    [Google Scholar]
  34. Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2008; 48:509–515 [View Article] [PubMed]
    [Google Scholar]
  35. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318–1322 [View Article] [PubMed]
    [Google Scholar]
  36. Cole SJ, Records AR, Orr MW, Linden SB, Lee VT. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun 2014; 82:2048–2058 [View Article] [PubMed]
    [Google Scholar]
  37. Gil-Perotin S, Ramirez P, Marti V, Sahuquillo JM, Gonzalez E et al. Implications of endotracheal tube biofilm in ventilator-associated pneumonia response: a state of concept. Crit Care 2012; 16:R93 [View Article] [PubMed]
    [Google Scholar]
  38. Gürtler N, Osthoff M, Rueter F, Wüthrich D, Zimmerli L et al. Prosthetic valve endocarditis caused by Pseudomonas aeruginosa with variable antibacterial resistance profiles: a diagnostic challenge. BMC Infect Dis 2019; 19:530 [View Article] [PubMed]
    [Google Scholar]
  39. Stapleton F, Dart JKG, Seal DV, Matheson M. Epidemiology of Pseudomonas aeruginosa keratitis in contact lens wearers. Epidemiol Infect 1995; 114:395–402 [View Article]
    [Google Scholar]
  40. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol 2008; 6:199–210 [View Article] [PubMed]
    [Google Scholar]
  41. Kahl LJ, Eckartt KN, Morales DK, Price-Whelan A, Dietrich LEP. Light/Dark and temperature cycling modulate metabolic electron flow in Pseudomonas aeruginosa biofilms. mBio 2022; 13:e0140722 [View Article] [PubMed]
    [Google Scholar]
  42. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304 [View Article] [PubMed]
    [Google Scholar]
  43. Ma L, Conover M, Lu H, Parsek MR, Bayles K et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5:e1000354 [View Article] [PubMed]
    [Google Scholar]
  44. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2011; 2:167 [View Article] [PubMed]
    [Google Scholar]
  45. Ma L, Wang S, Wang D, Parsek MR, Wozniak DJ. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 2012; 65:377–380 [View Article] [PubMed]
    [Google Scholar]
  46. Owlia P, Nosrati R, Alaghehbandan R, Lari AR. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates. GMS Hyg Infect Control 2014; 9:Doc13 [View Article] [PubMed]
    [Google Scholar]
  47. O’Toole A, Ricker EB, Nuxoll E. Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling 2015; 31:665–675 [View Article] [PubMed]
    [Google Scholar]
  48. Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 2005; 7:1593–1601 [View Article] [PubMed]
    [Google Scholar]
  49. Fleming D, Rumbaugh K. The consequences of biofilm dispersal on the host. Sci Rep 2018; 8:10738 [View Article] [PubMed]
    [Google Scholar]
  50. Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun 2014; 5:4462 [View Article] [PubMed]
    [Google Scholar]
  51. Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D et al. Context-specific requirement of forty-four two-component loci in Pseudomonas aeruginosa swarming. iScience 2019; 13:305–317 [View Article] [PubMed]
    [Google Scholar]
  52. Cai Y, Hutchin A, Craddock J, Walsh MA, Webb JS et al. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 2020; 10: [View Article]
    [Google Scholar]
  53. Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 2015; 6:e02456-14 [View Article] [PubMed]
    [Google Scholar]
  54. Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 2006; 62:1264–1277 [View Article] [PubMed]
    [Google Scholar]
  55. Case RJ, Labbate M, Kjelleberg S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2008; 2:345–349 [View Article] [PubMed]
    [Google Scholar]
  56. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996; 21:1137–1146 [View Article] [PubMed]
    [Google Scholar]
  57. Pearson JP, Passador L, Iglewski BH, Greenberg EP. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci 1995; 92:1490–1494 [View Article] [PubMed]
    [Google Scholar]
  58. Déziel E, Lépine F, Milot S, He J, Mindrinos MN et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci 2004; 101:1339–1344 [View Article]
    [Google Scholar]
  59. Xiao G, He J, Rahme LG. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 2006; 152:1679–1686 [View Article]
    [Google Scholar]
  60. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J Bacteriol 2003; 185:2066–2079 [View Article] [PubMed]
    [Google Scholar]
  61. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003; 185:2080–2095 [View Article]
    [Google Scholar]
  62. Déziel E, Lépine F, Milot S, Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 2003; 149:2005–2013 [View Article]
    [Google Scholar]
  63. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 2001; 67:1865–1873 [View Article] [PubMed]
    [Google Scholar]
  64. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP et al. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 2008; 190:662–671 [View Article] [PubMed]
    [Google Scholar]
  65. Medina G, Juárez K, Valderrama B, Soberón-Chávez G. Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 2003; 185:5976–5983 [View Article] [PubMed]
    [Google Scholar]
  66. Reis RS, Pereira AG, Neves BC, Freire DMG. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa – A review. Bioresource Technol 2011; 102:6377–6384 [View Article]
    [Google Scholar]
  67. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298 [View Article] [PubMed]
    [Google Scholar]
  68. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 2009; 11:279–288 [View Article] [PubMed]
    [Google Scholar]
  69. Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007; 189:5383–5386 [View Article] [PubMed]
    [Google Scholar]
  70. Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 2009; 5:e1000483 [View Article] [PubMed]
    [Google Scholar]
  71. Mikkelsen H, Sivaneson M, Filloux A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 2011; 13:1666–1681 [View Article]
    [Google Scholar]
  72. Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004; 53:1123–1134 [View Article] [PubMed]
    [Google Scholar]
  73. Badal D, Jayarani AV, Kollaran MA, Kumar A, Singh V. Pseudomonas aeruginosa biofilm formation on endotracheal tubes requires multiple two-component systems. J Med Microbiol 2020; 69:906–919 [View Article] [PubMed]
    [Google Scholar]
  74. Bains M, Fernández L, Hancock REW. Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:6762–6768 [View Article] [PubMed]
    [Google Scholar]
  75. Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N et al. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One 2012; 7:e42874 [View Article]
    [Google Scholar]
  76. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003; 27:215–237 [View Article] [PubMed]
    [Google Scholar]
  77. Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol 2015; 15:500–510 [View Article] [PubMed]
    [Google Scholar]
  78. Albrecht-Gary A-M, Blanc S, Rochel N, Ocaktan AZ, Abdallah MA. Bacterial iron transport: coordination properties of pyoverdin PaA, a peptidic siderophore of Pseudomonas aeruginosa. Inorg Chem 1994; 33:6391–6402 [View Article]
    [Google Scholar]
  79. Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol 2013; 3:75 [View Article] [PubMed]
    [Google Scholar]
  80. Perraud Q, Cantero P, Roche B, Gasser V, Normant VP et al. Phenotypic adaption of Pseudomonas aeruginosa by hacking siderophores produced by other microorganisms. Mol Cell Proteomics 2020; 19:589–607 [View Article] [PubMed]
    [Google Scholar]
  81. Yao H, Soldano A, Fontenot L, Donnarumma F, Lovell S et al. Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability. Biomolecules 2022; 12:366 [View Article]
    [Google Scholar]
  82. Eshelman K, Yao H, Punchi Hewage AND, Deay JJ, Chandler JR et al. Inhibiting the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial cytosol. Metallomics 2017; 9:646–659 [View Article]
    [Google Scholar]
  83. Pasqua M, Visaggio D, Lo Sciuto A, Genah S, Banin E et al. Ferric uptake regulator fur is conditionally essential in Pseudomonas aeruginosa. J Bacteriol 2017; 199:e00472-17 [View Article] [PubMed]
    [Google Scholar]
  84. Vasil ML. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 2007; 20:587–601 [View Article] [PubMed]
    [Google Scholar]
  85. Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci 2005; 102:11076–11081 [View Article] [PubMed]
    [Google Scholar]
  86. Jimenez PN, Koch G, Papaioannou E, Wahjudi M, Krzeslak J et al. Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 2010; 156:49–59 [View Article]
    [Google Scholar]
  87. Pradhan D, Tanwar A, Parthasarathy S, Singh V. Toroidal displacement of Klebsiella pneumoniae by Pseudomonas aeruginosa is a unique mechanism to avoid competition for iron. Microbiology 20222022 [View Article]
    [Google Scholar]
  88. Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A et al. RhlR expression in Pseudomonas aeruginosa is modulated by the pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601–8606 [View Article] [PubMed]
    [Google Scholar]
  89. Meng X, Ahator SD, Zhang L-H, Ellermeier CD. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems. mSphere 2020; 5:e00119–20 [View Article]
    [Google Scholar]
  90. Haddad A, Jensen V, Becker T, Häussler S. The Pho regulon influences biofilm formation and type three secretion in Pseudomonas aeruginosa. Environ Microbiol Rep 2009; 1:488–494 [View Article] [PubMed]
    [Google Scholar]
  91. Blus-Kadosh I, Zilka A, Yerushalmi G, Banin E. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa. PLoS One 2013; 8:e74444 [View Article] [PubMed]
    [Google Scholar]
  92. van Londen M, Aarts BM, Deetman PE, van der Weijden J, Eisenga MF et al. Post-transplant hypophosphatemia and the risk of death-censored graft failure and mortality after kidney transplantation. Clin J Am Soc Nephrol 2017; 12:1301–1310 [View Article] [PubMed]
    [Google Scholar]
  93. Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE et al. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care 2010; 14:R147 [View Article] [PubMed]
    [Google Scholar]
  94. Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y et al. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 2013; 47:625–646 [View Article] [PubMed]
    [Google Scholar]
  95. McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 2006; 188:3995–4006 [View Article] [PubMed]
    [Google Scholar]
  96. Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun 2018; 9:2635 [View Article] [PubMed]
    [Google Scholar]
  97. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 2004; 7:745–754 [View Article] [PubMed]
    [Google Scholar]
  98. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci 2006; 103:171–176 [View Article] [PubMed]
    [Google Scholar]
  99. Mulcahy H, Lewenza S, Bereswill S. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One 2011; 6:e23307 [View Article]
    [Google Scholar]
  100. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 2008; 4:e1000213 [View Article] [PubMed]
    [Google Scholar]
  101. Qin H, Zhao Y, Cheng M, Wang Q, Wang Q et al. Anti-biofilm properties of magnesium metal via alkaline pH. RSC Adv 2015; 5:21434–21444 [View Article]
    [Google Scholar]
  102. Bernier SP, Ha D-G, Khan W, Merritt JH, O’Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol 2011; 162:680–688 [View Article] [PubMed]
    [Google Scholar]
  103. Starkey M, Hickman JH, Ma L, Zhang N, De Long S et al. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 2009; 191:3492–3503 [View Article] [PubMed]
    [Google Scholar]
  104. Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 2016; 291:12547–12555 [View Article] [PubMed]
    [Google Scholar]
  105. Zulianello L, Canard C, Köhler T, Caille D, Lacroix J-S et al. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 2006; 74:3134–3147 [View Article] [PubMed]
    [Google Scholar]
  106. Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front Cell Infect Microbiol 2018; 7: [View Article]
    [Google Scholar]
  107. Jensen , Bjarnsholt T, Phipps R, Rasmussen TB, Calum H et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 2007; 153:1329–1338 [View Article]
    [Google Scholar]
  108. Kolpen M, Hansen CR, Bjarnsholt T, Moser C, Christensen LD et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 2010; 65:57–62 [View Article] [PubMed]
    [Google Scholar]
  109. Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019; 363:eaat9691 [View Article] [PubMed]
    [Google Scholar]
  110. Sonawane A, Jyot J, During R, Ramphal R. Neutrophil elastase, an innate immunity effector molecule, represses flagellin transcription in Pseudomonas aeruginosa. Infect Immun 2006; 74:6682–6689 [View Article]
    [Google Scholar]
  111. Lovewell RR, Hayes SM, O’Toole GA, Berwin B. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment. Am J Physiol Lung Cell Mol Physiol 2014; 306:L698–707 [View Article] [PubMed]
    [Google Scholar]
  112. Huus KE, Joseph J, Zhang L, Wong A, Aaron SD et al. Clinical isolates of Pseudomonas aeruginosa from chronically infected cystic fibrosis patients fail to activate the inflammasome during both stable infection and pulmonary exacerbation. J Immunol 2016; 196:3097–3108 [View Article] [PubMed]
    [Google Scholar]
  113. Bjarnsholt T, Jensen , Burmølle M, Hentzer M, Haagensen JAJ et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 2005; 151:373–383 [View Article]
    [Google Scholar]
  114. Harrison JJ, Almblad H, Irie Y, Wolter DJ, Eggleston HC et al. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 2020; 16:e1008848 [View Article] [PubMed]
    [Google Scholar]
  115. Line L, Alhede M, Kolpen M, Kühl M, Ciofu O et al. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol 2014; 5:554 [View Article] [PubMed]
    [Google Scholar]
  116. Alhede M, Bjarnsholt T, Jensen , Phipps RK, Moser C et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 2009; 155:3500–3508 [View Article] [PubMed]
    [Google Scholar]
  117. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005; 175:7512–7518 [View Article] [PubMed]
    [Google Scholar]
  118. Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S et al. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathog 2018; 14:e1006842 [View Article] [PubMed]
    [Google Scholar]
  119. Mishra M, Byrd MS, Sergeant S, Azad AK, Parsek MR et al. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell Microbiol 2012; 14:95–106 [View Article] [PubMed]
    [Google Scholar]
  120. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [View Article] [PubMed]
    [Google Scholar]
  121. Vrany JD, Stewart PS, Suci PA. Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 1997; 41:1352–1358 [View Article] [PubMed]
    [Google Scholar]
  122. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 2013; 15:2865–2878 [View Article] [PubMed]
    [Google Scholar]
  123. Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 1994; 38:2125–2133 [View Article] [PubMed]
    [Google Scholar]
  124. Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 1992; 36:2054–2056 [View Article] [PubMed]
    [Google Scholar]
  125. Kumon H, Tomochika K, Matunaga T, Ogawa M, Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 1994; 38:615–619 [View Article] [PubMed]
    [Google Scholar]
  126. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003; 47:317–323 [View Article] [PubMed]
    [Google Scholar]
  127. Xu KD, Stewart PS, Xia F, Huang C-T, McFeters GA. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 1998; 64:4035–4039 [View Article] [PubMed]
    [Google Scholar]
  128. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 2004; 48:2659–2664 [View Article] [PubMed]
    [Google Scholar]
  129. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175–1187 [View Article]
    [Google Scholar]
  130. Heydari S, Eftekhar F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol 2015; 8:e15514 [View Article] [PubMed]
    [Google Scholar]
  131. Bowler LL, Zhanel GG, Ball TB, Saward LL. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 2012; 56:4976–4979 [View Article] [PubMed]
    [Google Scholar]
  132. Wassermann T, Meinike Jørgensen K, Ivanyshyn K, Bjarnsholt T, Khademi SMH et al. The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin. Microbiology 2016; 162:865–875 [View Article]
    [Google Scholar]
  133. Elliott D, Burns JL, Hoffman LR. Exploratory study of the prevalence and clinical significance of tobramycin-mediated biofilm induction in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2010; 54:3024–3026 [View Article]
    [Google Scholar]
  134. Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 1991; 37:91–105 [View Article] [PubMed]
    [Google Scholar]
  135. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 2015; 197:2252–2264 [View Article]
    [Google Scholar]
  136. Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci 2016; 113:1642–1647 [View Article] [PubMed]
    [Google Scholar]
  137. Smith K, Rajendran R, Kerr S, Lappin DF, Mackay WG et al. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med Mycol 2015; 53:645–655 [View Article] [PubMed]
    [Google Scholar]
  138. Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microb Environ 2013; 28:13–24 [View Article]
    [Google Scholar]
  139. Bisht K, Baishya J, Wakeman CA. Pseudomonas aeruginosa polymicrobial interactions during lung infection. Curr Opin Microbiol 2020; 53:1–8 [View Article] [PubMed]
    [Google Scholar]
  140. Hendricks KJ, Burd TA, Anglen JO, Simpson AW, Christensen GD et al. Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds. J Bone Joint Surg Am 2001; 83:855–861 [View Article] [PubMed]
    [Google Scholar]
  141. Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1–15 [View Article]
    [Google Scholar]
  142. Briaud P, Bastien S, Camus L, Boyadjian M, Reix P et al. Impact of coexistence phenotype between Staphylococcus aureus and Pseudomonas aeruginosa isolates on clinical outcomes among cystic fibrosis patients. Front Cell Infect Microbiol 2020; 10:266 [View Article] [PubMed]
    [Google Scholar]
  143. Chew SC, Yam JKH, Matysik A, Seng ZJ, Klebensberger J et al. Matrix polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of Pseudomonas aeruginosa during dual-species biofilm development with Staphylococcus aureus. mBio 2018; 9:e00585-18 [View Article] [PubMed]
    [Google Scholar]
  144. Chew SC, Kundukad B, Seviour T, van der Maarel JRC, Yang L et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 2014; 5:e01536–14 [View Article] [PubMed]
    [Google Scholar]
  145. Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis MR Jr et al. Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection. mBio 2017; 8:e00186-17 [View Article] [PubMed]
    [Google Scholar]
  146. Yang L, Liu Y, Markussen T, Høiby N, Tolker-Nielsen T et al. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 2011; 62:339–347 [View Article]
    [Google Scholar]
  147. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 2009; 47:4084–4089 [View Article] [PubMed]
    [Google Scholar]
  148. Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME et al. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr Opin Food Sci 2019; 26:57–64 [View Article]
    [Google Scholar]
  149. Cendra M del M, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734 [View Article]
    [Google Scholar]
  150. Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 2017; 13:e1006300 [View Article] [PubMed]
    [Google Scholar]
  151. Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans communication in coinfection scenarios: insights through network analysis. Front Cell Infect Microbiol 2020; 10:550505 [View Article] [PubMed]
    [Google Scholar]
  152. Phuengmaung P, Somparn P, Panpetch W, Singkham-In U, Wannigama DL et al. Coexistence of Pseudomonas aeruginosa with Candida albicans enhances biofilm thickness through alginate-related extracellular matrix but is attenuated by N-acetyl-L-cysteine. Front Cell Infect Microbiol 2020; 10:594336 [View Article] [PubMed]
    [Google Scholar]
  153. Bragonzi A, Farulla I, Paroni M, Twomey KB, Pirone L et al. Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS One 2012; 7:e52330 [View Article] [PubMed]
    [Google Scholar]
  154. Badal D, Jayarani AV, Kollaran MA, Prakash D, P M et al. Foraging signals promote swarming in starving Pseudomonas aeruginosa. mBio 2021; 12:e0203321 [View Article] [PubMed]
    [Google Scholar]
  155. Warburton DW, Bowen B, Konkle A. The survival and recovery of Pseudomonas aeruginosa and its effect upon salmonellae in water: methodology to test bottled water in Canada. Can J Microbiol 1994; 40:987–992 [View Article] [PubMed]
    [Google Scholar]
  156. Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect 2012; 82:19–24 [View Article] [PubMed]
    [Google Scholar]
  157. Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E et al. Hospital drains as reservoirs of Pseudomonas aeruginosa: multiple-locus variable-number of tandem repeats analysis genotypes recovered from faucets, sink surfaces and patients. Pathogens 2017; 6:36 [View Article] [PubMed]
    [Google Scholar]
  158. Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 1974; 28:987–991 [View Article] [PubMed]
    [Google Scholar]
  159. Schroth MN, Cho JJ, Green SK, Kominos SD. Epidemiology of Pseudomonas aeruginosa in agricultural areas. J Med Microbiol 2018; 67:1191–1201 [View Article] [PubMed]
    [Google Scholar]
  160. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 2020; 128:220–231 [View Article] [PubMed]
    [Google Scholar]
  161. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci 2008; 105:3100–3105 [View Article] [PubMed]
    [Google Scholar]
  162. Dolan SK, Kohlstedt M, Trigg S, Vallejo Ramirez P, Kaminski CF et al. Contextual flexibility in Pseudomonas aeruginosa central carbon metabolism during growth in single carbon sources. mBio 2020; 11:e02684-19 [View Article] [PubMed]
    [Google Scholar]
  163. Daddaoua A, Molina-Santiago C, de la Torre J, Krell T, Ramos J-L. GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:7654–7663 [View Article] [PubMed]
    [Google Scholar]
  164. Ritchings BW, Almira EC, Lory S, Ramphal R. Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun 1995; 63:4868–4876 [View Article] [PubMed]
    [Google Scholar]
  165. Petrova OE, Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 2009; 5:e1000668 [View Article] [PubMed]
    [Google Scholar]
  166. Bhuwan M, Lee H-J, Peng H-L, Chang H-Y. Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 strain. J Biol Chem 2012; 287:1903–1914 [View Article]
    [Google Scholar]
  167. Mikkelsen H, Hui K, Barraud N, Filloux A. The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14. Mol Microbiol 2013; 89:450–463 [View Article] [PubMed]
    [Google Scholar]
  168. Wang T, Du X, Ji L, Han Y, Dang J et al. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Reports 2021; 35:108957 [View Article]
    [Google Scholar]
  169. Chand NS, Lee J-W, Clatworthy AE, Golas AJ, Smith RS et al. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J Bacteriol 2011; 193:2989–2999 [View Article] [PubMed]
    [Google Scholar]
  170. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci 2013; 110:1059–1064 [View Article]
    [Google Scholar]
  171. Huangyutitham V, Güvener ZT, Harwood CS. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. mBio 2013; 4:e00242–13 [View Article] [PubMed]
    [Google Scholar]
  172. Tian Z-X, Yi X-X, Cho A, O’Gara F, Wang Y-P et al. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLoS Pathog 2016; 12:e1005932 [View Article]
    [Google Scholar]
  173. Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah T-F. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 2012; 194:3128–3136 [View Article] [PubMed]
    [Google Scholar]
  174. Wang D, Seeve C, Pierson LS, Pierson EA. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics 2013; 14: [View Article]
    [Google Scholar]
  175. Bielecki P, Jensen V, Schulze W, Gödeke J, Strehmel J et al. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res 2015; 43:6413–6425 [View Article]
    [Google Scholar]
  176. Fernández-Piñar R, Espinosa-Urgel M, Dubern J-F, Heeb S, Ramos JL et al. Fatty acid-mediated signalling between two Pseudomonas species. Environ Microbiol Rep 2012; 4:417–423 [View Article]
    [Google Scholar]
  177. Yang Z, Lu C-D. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J Bacteriol 2007; 189:3945–3953 [View Article]
    [Google Scholar]
  178. Li W, Lu C-D. Regulation of Carbon and Nitrogen Utilization by CbrAB and NtrBC Two-Component Systems in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5413–5420 [View Article]
    [Google Scholar]
  179. Lau C-F, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiologyopen 2015; 4:121–135 [View Article] [PubMed]
    [Google Scholar]
  180. Rampersaud A, Harlocker SL, Inouye M. The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. J Biol Chem 1994; 269:12559–12566 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001335
Loading
/content/journal/micro/10.1099/mic.0.001335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error