1887

Abstract

is a common colonizer of the human gut and in doing so it must be able to resist the actions of the host’s innate defences. Bile salts are a class of molecules that possess potent antibacterial activity that control growth. Bacteria that colonize and survive in that niche must be able to resist the action of bile salts, but the mechanisms by which does so are poorly understood. Here we show that FadB is a bile-induced oxidoreductase which mediates bile salt resistance and when heterologously expressed in renders them resistant. Deletion of attenuated survival of in a model of the human distal colon.

Funding
This study was supported by the:
  • Iraqi Cultural Attaché in London
    • Principle Award Recipient: AmjedAlsultan
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001314
2023-03-22
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/3/mic001314.html?itemId=/content/journal/micro/10.1099/mic.0.001314&mimeType=html&fmt=ahah

References

  1. Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus?. Trends Microbiol 2001; 9:605–610 [View Article] [PubMed]
    [Google Scholar]
  2. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 2004; 364:703–705 [View Article] [PubMed]
    [Google Scholar]
  3. Smyth DS, Kafer JM, Wasserman GA, Velickovic L, Mathema B et al. Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J Infect Dis 2012; 206:1168–1177 [View Article] [PubMed]
    [Google Scholar]
  4. Acton DS, Tempelmans Plat-Sinnige M, van Wamel W, de Groot N, van Belkum A. Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact?. Eur J Clin Microbiol Infect Dis 2009; 28:115–127 [View Article]
    [Google Scholar]
  5. Batra R, Eziefula AC, Wyncoll D, Edgeworth J. Throat and rectal swabs may have an important role in MRSA screening of critically ill patients. Intensive Care Med 2008; 34:1703–1706 [View Article] [PubMed]
    [Google Scholar]
  6. Buehlmann M, Frei R, Fenner L, Dangel M, Fluckiger U et al. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infect Control Hosp Epidemiol 2008; 29:510–516 [View Article]
    [Google Scholar]
  7. Dupeyron C, Campillo B, Bordes M, Faubert E, Richardet J-P et al. A clinical trial of mupirocin in the eradication of methicillin-resistant Staphylococcus aureus nasal carriage in a digestive disease unit. J Hosp Infect 2002; 52:281–287 [View Article] [PubMed]
    [Google Scholar]
  8. Silvestri L, Milanese M, Oblach L, Fontana F, Gregori D et al. Enteral vancomycin to control methicillin-resistant Staphylococcus aureus outbreak in mechanically ventilated patients. Am J Infect Control 2002; 30:391–399 [View Article] [PubMed]
    [Google Scholar]
  9. Squier C, Rihs JD, Risa KJ, Sagnimeni A, Wagener MM et al. Staphylococcus aureus rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. Infect Control Hosp Epidemiol 2002; 23:495–501 [View Article] [PubMed]
    [Google Scholar]
  10. Bhalla A, Aron DC, Donskey CJ. Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients. BMC Infect Dis 2007; 7:1–7 [View Article]
    [Google Scholar]
  11. Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 2007; 65 Suppl 2:50–54 [View Article] [PubMed]
    [Google Scholar]
  12. Boyce JM, Havill NL, Maria B. Frequency and possible infection control implications of gastrointestinal colonization with methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2005; 43:5992–5995 [View Article] [PubMed]
    [Google Scholar]
  13. Boyce JM, Havill NL, Otter JA, Adams NM. Widespread environmental contamination associated with patients with diarrhea and methicillin-resistant Staphylococcus aureus colonization of the gastrointestinal tract. Infect Control Hosp Epidemiol 2007; 28:1142–1147 [View Article]
    [Google Scholar]
  14. Masaki H, Asoh N, Watanabe H, Tao M, Watanabe K et al. Possible relationship between Staphylococcus aureus colonizing the respiratory tract and rectum and S. aureus isolated in a geriatric hospital environment. Intern Med 2003; 42:281–282 [View Article]
    [Google Scholar]
  15. Claassen-Weitz S, Shittu AO, Ngwarai MR, Thabane L, Nicol MP et al. Fecal carriage of Staphylococcus aureus in the hospital and community setting: a systematic review. Front Microbiol 2016; 7:449 [View Article]
    [Google Scholar]
  16. Senn L, Clerc O, Zanetti G, Basset P, Prod’hom G et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. mBio 2016; 7:e02039–15 [View Article] [PubMed]
    [Google Scholar]
  17. van Belkum A. Hidden Staphylococcus aureus carriage: overrated or underappreciated?. mBio 2016; 7:e00079–16 [View Article] [PubMed]
    [Google Scholar]
  18. Froberg MK, Palavecino E, Dykoski R, Gerding DN, Peterson LR et al. Staphylococcus aureus and Clostridium difficile cause distinct pseudomembranous intestinal diseases. Clin Infect Dis 2004; 39:747–750 [View Article] [PubMed]
    [Google Scholar]
  19. Adlerberth I, Strachan DP, Matricardi PM, Ahrné S, Orfei L et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 2007; 120:343–350 [View Article]
    [Google Scholar]
  20. Björkstén B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999; 29:342–346 [View Article] [PubMed]
    [Google Scholar]
  21. Lindberg E, Adlerberth I, Hesselmar B, Saalman R, Strannegård I-L et al. High rate of transfer of Staphylococcus aureus from parental skin to infant gut flora. J Clin Microbiol 2004; 42:530–534 [View Article] [PubMed]
    [Google Scholar]
  22. Lindberg E, Nowrouzian F, Adlerberth I, Wold AE. Long-time persistence of superantigen-producing Staphylococcus aureus strains in the intestinal microflora of healthy infants. Pediatr Res 2000; 48:741–747 [View Article] [PubMed]
    [Google Scholar]
  23. Lundell A-C, Adlerberth I, Lindberg E, Karlsson H, Ekberg S et al. Increased levels of circulating soluble CD14 but not CD83 in infants are associated with early intestinal colonization with Staphylococcus aureus. Clin Exp Allergy 2007; 37:62–71 [View Article]
    [Google Scholar]
  24. Hess DJ, Garni RM, Henry-Stanley MJ, Wells CL. Escherichia coli modulates extraintestinal spread of Staphylococcus aureus. Shock 2005; 24:376–381 [View Article] [PubMed]
    [Google Scholar]
  25. Nakamura Y, Aramaki Y, Kakiuchi T. A mouse model for postoperative fatal enteritis due to Staphylococcus infection. J Surg Res 2001; 96:35–43 [View Article] [PubMed]
    [Google Scholar]
  26. Krezalek MA, Hyoju S, Zaborin A, Okafor E, Chandrasekar L et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the “Trojan Horse Hypothesis.”. Ann Surg 2018; 267:749–758 [View Article] [PubMed]
    [Google Scholar]
  27. Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29:625–651 [View Article]
    [Google Scholar]
  28. Peterson KM. Expression of Vibrio cholerae virulence genes in response to environmental signals. Curr Issues Intest Microbiol 2002; 3:29–38 [PubMed]
    [Google Scholar]
  29. Prouty A, Gunn J. Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. Infect Immun 2000; 68:6763–6769 [View Article] [PubMed]
    [Google Scholar]
  30. Crawford RW, Keestra AM, Winter SE, Xavier MN, Tsolis RM et al. Very long O-antigen chains enhance fitness during Salmonella-induced colitis by increasing bile resistance. PLoS Pathog 2012; 8:e1002918 [View Article] [PubMed]
    [Google Scholar]
  31. Nesper J, Schild S, Lauriano CM, Kraiss A, Klose KE et al. Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization. Infect Immun 2002; 70:5990–5996 [View Article] [PubMed]
    [Google Scholar]
  32. Sannasiddappa TH, Hood GA, Hanson KJ, Costabile A, Gibson GR et al. Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions. Infect Immun 2015; 83:2350–2357 [View Article] [PubMed]
    [Google Scholar]
  33. Prouty AM, Brodsky IE, Falkow S, Gunn JS. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiol 2004; 150:775–783 [View Article] [PubMed]
    [Google Scholar]
  34. Trainor EA, Horton KE, Savage PB, Testerman TL, McGee DJ. Role of the HefC efflux pump in Helicobacter pylori cholesterol-dependent resistance to ceragenins and bile salts. Infect Immun 2011; 79:88–97 [View Article] [PubMed]
    [Google Scholar]
  35. Lin J, Sahin O, Michel LO, Zhang Q. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 2003; 71:4250–4259 [View Article] [PubMed]
    [Google Scholar]
  36. Novick R. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 1967; 33:155–166 [View Article] [PubMed]
    [Google Scholar]
  37. Clarke SR, Harris LG, Richards RG, Foster SJ. Analysis of Ebh, a 1.1-megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus. Infect Immun 2002; 70:6680–6687 [View Article] [PubMed]
    [Google Scholar]
  38. Chen L, Shopsin B, Zhao Y, Smyth D, Wasserman GA et al. Real-time nucleic acid sequence-based amplification assay for rapid detection and quantification of agr functionality in clinical Staphylococcus aureus isolates. J Clin Microbiol 2012; 50:657–661 [View Article] [PubMed]
    [Google Scholar]
  39. Kenny JG, Ward D, Josefsson E, Jonsson I-M, Hinds J et al. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 2009; 4:e4344 [View Article] [PubMed]
    [Google Scholar]
  40. Valle J, Toledo-Arana A, Berasain C, Ghigo J-M, Amorena B et al. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 2003; 48:1075–1087 [View Article] [PubMed]
    [Google Scholar]
  41. Wolz C, Goerke C, Landmann R, Zimmerli W, Fluckiger U. Transcription of clumping factor A in attached and unattached Staphylococcus aureus in vitro and during device-related infection. Infect Immun 2002; 70:2758–2762 [View Article] [PubMed]
    [Google Scholar]
  42. Lee N. Molecular aspects of ara regulation. In The Operon Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1980 pp 389–410
    [Google Scholar]
  43. Schleif R. DNA looping. Annu Rev Biochem 1992; 61:199–223 [View Article] [PubMed]
    [Google Scholar]
  44. Lynen F, Wieland O. [94] β-ketoreductase. Meth Enzymol 1955; 1:566–573
    [Google Scholar]
  45. Alarifi S, Bell A, Walton G. In vitro fermentation of gum acacia - impact on the faecal microbiota. Int J Food Sci Nutr 2018; 69:696–704 [View Article] [PubMed]
    [Google Scholar]
  46. Monteagudo-Mera A, Chatzifragkou A, Kosik O, Gibson G, Lovegrove A et al. Evaluation of the prebiotic potential of arabinoxylans extracted from wheat distillers’ dried grains with solubles (DDGS) and in-process samples. Appl Microbiol Biotechnol 2018; 102:7577–7587 [View Article] [PubMed]
    [Google Scholar]
  47. Martín-Peláez S, Gibson GR, Martín-Orúe SM, Klinder A, Rastall RA et al. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. FEMS Microbiol Ecol 2008; 66:608–619 [View Article] [PubMed]
    [Google Scholar]
  48. Sannasiddappa TH, Costabile A, Gibson GR, Clarke SR. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system. PLoS One 2011; 6:e23227 [View Article] [PubMed]
    [Google Scholar]
  49. Kempf VA, Trebesius K, Autenrieth IB. Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 2000; 38:830–838 [View Article] [PubMed]
    [Google Scholar]
  50. Esteller A. Physiology of bile secretion. World J Gastroenterol 2008; 14:5641–5649 [View Article] [PubMed]
    [Google Scholar]
  51. Minuk GY, Rascanin N, Sarjeant ES, Pai CH. Sepsis and cholestasis: the in vitro effects of bacterial products on 14C-taurocholate uptake by isolated rat hepatocytes. Liver 1986; 6:199–204 [View Article] [PubMed]
    [Google Scholar]
  52. Makino I, Nakagawa S, Mashimo K. Conjugated and unconjugated serum bile acid levels in patients with hepatobiliary diseases. Gastroenterology 1969; 56:1033–1039 [PubMed]
    [Google Scholar]
  53. Rudman D, Kendall FE. Bile acid content of human serum. I. Serum bile acids in patients with hepatic disease. J Clin Invest 1957; 36:530–537 [View Article] [PubMed]
    [Google Scholar]
  54. Xie G, Wang Y, Wang X, Zhao A, Chen T et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res 2015; 14:850–859 [View Article] [PubMed]
    [Google Scholar]
  55. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H et al. AG protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278:9435–9440 [View Article] [PubMed]
    [Google Scholar]
  56. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM et al. Identification of a nuclear receptor for bile acids. Science 1999; 284:1362–1365 [View Article] [PubMed]
    [Google Scholar]
  57. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284:1365–1368 [View Article] [PubMed]
    [Google Scholar]
  58. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol 2015; 31:159–165 [View Article] [PubMed]
    [Google Scholar]
  59. D’Aldebert E, Biyeyeme Bi Mve M-J, Mergey M, Wendum D, Firrincieli D et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 2009; 136:1435–1443 [View Article] [PubMed]
    [Google Scholar]
  60. Nelson M, Grier M, Barbaro S, Ismail M. Polyfunctional antibiotics affecting bacterial membrane dynamics. AIAMC 2009; 8:3–16 [View Article]
    [Google Scholar]
  61. Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 2006; 188:1979–1986 [View Article] [PubMed]
    [Google Scholar]
  62. Sannasiddappa TH, Lund PA, Clarke SR. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front Microbiol 2017; 8:1581 [View Article]
    [Google Scholar]
  63. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999; 159:2647–2658 [View Article] [PubMed]
    [Google Scholar]
  64. Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 2008; 105:13580–13585 [View Article] [PubMed]
    [Google Scholar]
  65. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517:205–208 [View Article] [PubMed]
    [Google Scholar]
  66. Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47:241–259 [View Article] [PubMed]
    [Google Scholar]
  67. Baron SF, Franklund CV, Hylemon PB. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J Bacteriol 1991; 173:4558–4569 [View Article] [PubMed]
    [Google Scholar]
  68. Doden H, Sallam LA, Devendran S, Ly L, Doden G et al. Metabolismof oxo-bile acids and characterization of recombinant 12α-hydroxysteroiddehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol 2018; 84:e00235-18 [View Article] [PubMed]
    [Google Scholar]
  69. Mallonee DH, Lijewski MA, Hylemon PB. Expression in Escherichia coli and characterization of a bile acid-inducible 3 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. Curr Microbiol 1995; 30:259–263 [View Article] [PubMed]
    [Google Scholar]
  70. Ridlon JM, Kang D-J, Hylemon PB. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe 2010; 16:137–146 [View Article] [PubMed]
    [Google Scholar]
  71. Wells JE, Hylemon PB. Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces. Appl Environ Microbiol 2000; 66:1107–1113 [View Article] [PubMed]
    [Google Scholar]
  72. Ridlon JM, Harris SC, Bhowmik S, Kang D-J, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7:22–39 [View Article] [PubMed]
    [Google Scholar]
  73. Kakiyama G, Muto A, Takei H, Nittono H, Murai T et al. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: validation by GC-MS and LC-MS. J Lipid Res 2014; 55:978–990 [View Article] [PubMed]
    [Google Scholar]
  74. Yang SY, Li JM, He XY, Cosloy SD, Schulz H. Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase. J Bacteriol 1988; 170:2543–2548 [View Article] [PubMed]
    [Google Scholar]
  75. Yang SY, Schulz H. The large subunit of the fatty acid oxidation complex from Escherichia coli is a multifunctional polypeptide. Evidence for the existence of a fatty acid oxidation operon (fad AB) in Escherichia coli. J Biol Chem 1983; 258:9780–9785 [PubMed]
    [Google Scholar]
  76. Pramanik A, Pawar S, Antonian E, Schulz H. Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J Bacteriol 1979; 137:469–473 [View Article] [PubMed]
    [Google Scholar]
  77. Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 2018; 112:250–262 [View Article] [PubMed]
    [Google Scholar]
  78. Johnson R, Ravenhall M, Pickard D, Dougan G, Byrne A et al. Comparison of Salmonella enterica Serovars Typhi and Typhimurium reveals typhoidal serovar-specific responses to bile. Infect Immun 2018; 86:e00490-17 [View Article] [PubMed]
    [Google Scholar]
  79. Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 2013; 4:396 [View Article] [PubMed]
    [Google Scholar]
  80. Sánchez B, Champomier-Vergès M-C, Stuer-Lauridsen B, Ruas-Madiedo P, Anglade P et al. Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 2007; 73:6757–6767 [View Article] [PubMed]
    [Google Scholar]
  81. Murga MALF, de Valdez GF, Disalvo EA. Effect of lipid composition on the stability of cellular membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures. Arch Biochem Biophys 2001; 388:179–184 [View Article] [PubMed]
    [Google Scholar]
  82. Taranto MP, Fernandez Murga ML, Lorca G, de Valdez GF. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J Appl Microbiol 2003; 95:86–91 [View Article] [PubMed]
    [Google Scholar]
  83. Lowe PJ, Coleman R. Membrane fluidity and bile salt damage. Biochim Biophys Acta 1981; 640:55–65 [View Article] [PubMed]
    [Google Scholar]
  84. Black PN, DiRusso CC. Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta 1994; 1210:123–145 [View Article] [PubMed]
    [Google Scholar]
  85. Campbell JW, Morgan-Kiss RM, Cronan JE. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 2003; 47:793–805 [View Article] [PubMed]
    [Google Scholar]
  86. Pavoncello V, Barras F, Bouveret E. Degradation of exogenous fatty acids in Escherichia coli. Biomolecules 2022; 12:1019 [View Article] [PubMed]
    [Google Scholar]
  87. Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK et al. σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 2002; 184:5457–5467 [View Article] [PubMed]
    [Google Scholar]
  88. Kreiswirth BN, Löfdahl S, Betley MJ, O’Reilly M, Schlievert PM et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 1983; 305:709–712 [View Article] [PubMed]
    [Google Scholar]
  89. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008 [View Article]
    [Google Scholar]
  90. Arnaud M, Chastanet A, Débarbouillé M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 2004; 70:6887–6891 [View Article]
    [Google Scholar]
  91. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995; 177:4121–4130 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001314
Loading
/content/journal/micro/10.1099/mic.0.001314
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error