1887

Abstract

Ps29 showed repellent responses to alcohols including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,3-propanediol and prenol. Ps29 possesses 22 putative chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). To identify a MCP involved in negative chemotaxis to ethanol, we measured ethanol chemotaxis of a complete collection of single gene deletion mutants of Ps29. However, all the mutants showed repellent responses to ethanol comparable to that of the wild-type strain. We constructed a stepwise- and multiple- gene deletion mutant collection of Ps29. Analysis of the collection found that an 18--knockout mutant (strain POC18) failed to respond to ethanol. Complementation analysis using POC18 as the host strain found that introduction of , , , , and restored the ability of POC18 to respond to ethanol. However, unexpectedly, strain POC10II, harbouring unmarked deletions in 10 genes including , , , , and showed repellent responses to ethanol comparable to that of wild-type Ps29. We hypothesised that multiple mutations in POC18 led to a shortage of MCPs required for formation of functional chemoreceptor arrays. When pPS16 (encoding McpP involved in phosphate chemotaxis) was introduced into POC18, POC18(pPS16) did not respond to phosphate. This result supports the hypothesis. But, genetic analysis revealed that MCPs (Mcp07, Mcp13, Mcp20 and Mcp21) are not essential for ethanol chemotaxis. Thus, we conclude that many and unspecified MCPs are involved in negative chemotaxis to ethanol in Ps29.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000574
2017-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1880.html?itemId=/content/journal/micro/10.1099/mic.0.000574&mimeType=html&fmt=ahah

References

  1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  2. Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 2010;187:920–928 [CrossRef][PubMed]
    [Google Scholar]
  3. Parkinson JS, Hazelbauer GL, Falke JJ. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 2015;23:257–266 [CrossRef][PubMed]
    [Google Scholar]
  4. Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev 2015;39:17–46 [CrossRef][PubMed]
    [Google Scholar]
  5. Micali G, Endres RG. Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr Opin Microbiol 2016;30:8–15 [CrossRef][PubMed]
    [Google Scholar]
  6. Hida A, Oku S, Kawasaki T, Nakashimada Y, Tajima T et al. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and L-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl Environ Microbiol 2015;81:7420–7430 [CrossRef][PubMed]
    [Google Scholar]
  7. Hida A, Oku S, Nakashimada Y, Tajima T, Kato J. Identification of boric acid as a novel chemoattractant and elucidation of its chemoreceptor in Ralstonia pseudosolanacearum Ps29. Sci Rep 2017;7:8609 [CrossRef][PubMed]
    [Google Scholar]
  8. Tunchai M, Hida A, Oku S, Nakashimada Y, Tajima T et al. Identification and characterization of chemosensors for D-malate, unnatural enantiomer of malate, in Ralstonia pseudosolanacearum. Microbiology 2017;163:233–242 [CrossRef][PubMed]
    [Google Scholar]
  9. Tunchai M, Hida A, Oku S, Nakashimada Y, Nikata T et al. Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein. J Biosci Bioeng 2017; doi:10.1016/j.jbiosc.2017.07.002 [CrossRef][PubMed]
    [Google Scholar]
  10. Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 2006;188:3697–3708 [CrossRef][PubMed]
    [Google Scholar]
  11. Tans-Kersten J, Huang H, Allen C. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 2001;183:3597–3605 [CrossRef][PubMed]
    [Google Scholar]
  12. Shitashiro M, Tanaka H, Hong CS, Kuroda A, Takiguchi N et al. Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J Biosci Bioeng 2005;99:396–402 [CrossRef][PubMed]
    [Google Scholar]
  13. Tso WW, Adler J. Negative chemotaxis in Escherichia coli. J Bacteriol 1974;118:560–576[PubMed]
    [Google Scholar]
  14. Lazova MD, Butler MT, Shimizu TS, Harshey RM. Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions. Mol Microbiol 2012;84:697–711 [CrossRef][PubMed]
    [Google Scholar]
  15. Eisenbach M, Lengeler JW, Varon M, Gutnick D, Meili R et al. Chemotaxis, 1st ed. London: Imperial College Press; 2004;[Crossref]
    [Google Scholar]
  16. Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S et al. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 2007;153:2630–2639 [CrossRef][PubMed]
    [Google Scholar]
  17. Sambrook J, Fristch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Spring Harbor Laboratory Press;
    [Google Scholar]
  18. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1983;1:784–791 [CrossRef]
    [Google Scholar]
  19. Hendrick CA, Sequeira L. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl Environ Microbiol 1984;48:94–101[PubMed]
    [Google Scholar]
  20. Nikata T, Sumida K, Kato J, Ohtake H. Rapid method for analyzing bacterial behavioral responses to chemical stimuli. Appl Environ Microbiol 1992;58:2250–2254[PubMed]
    [Google Scholar]
  21. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994;145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  22. Kato J. Pseudomonas motility and chemotaxis. In Rehm B. (editor) Pseudomonas. Model Organism, Pathogen, Cell Factory Weinheim: Wiley-VCH Verlag GmbH & Co; 2008; pp.109–128
    [Google Scholar]
  23. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z et al. Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci USA 2009;106:17181–17186 [CrossRef][PubMed]
    [Google Scholar]
  24. Jones CW, Armitage JP. Positioning of bacterial chemoreceptors. Trends Microbiol 2015;23:247–256 [CrossRef][PubMed]
    [Google Scholar]
  25. Nunes C, Sousa C, Ferreira H, Lucio M, Lima JL et al. Substituted phenols as pollutants that affect membrane fluidity. J Environ Biol 2008;29:733 738[PubMed]
    [Google Scholar]
  26. Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201–222[PubMed]
    [Google Scholar]
  27. Ingram Lonnie O'Neal, Buttke TM. Effects of alcohols on micro-organisms. Advances in Microbial Physiology 1985;253–300[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000574
Loading
/content/journal/micro/10.1099/mic.0.000574
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error