1887

Abstract

DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C-methyltransferases. We report on the mutagenic potential of the meningococcal C-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.

Keyword(s): DNA repair and Neisseria
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000492
2017-07-12
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/7/1003.html?itemId=/content/journal/micro/10.1099/mic.0.000492&mimeType=html&fmt=ahah

References

  1. Sánchez-Romero MA, Cota I, Casadesús J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 2015;25:9–16 [CrossRef][PubMed]
    [Google Scholar]
  2. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013;77:53–72 [CrossRef][PubMed]
    [Google Scholar]
  3. Kow YW. Repair of deaminated bases in DNA. Free Radic Biol Med 2002;33:886–893[PubMed][CrossRef]
    [Google Scholar]
  4. Bhagwat AS, Lieb M. Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Mol Microbiol 2002;44:1421–1428 [CrossRef][PubMed]
    [Google Scholar]
  5. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015;43:D298–D299 [CrossRef][PubMed]
    [Google Scholar]
  6. Choi SH, Leach JE. Identification of the XorII methyltransferase gene and a vsr homolog from Xanthomonas oryzae pv. oryzae. Mol Gen Genet 1994;244:383–390 [CrossRef][PubMed]
    [Google Scholar]
  7. Cupples CG, Macintyre G. The E. coli Vsr endonuclease. assaying activity in vitro and in vivo. Methods Mol Biol 2000;152:63–73 [CrossRef][PubMed]
    [Google Scholar]
  8. Hennecke F, Kolmar H, Bründl K, Fritz HJ. The vsr gene product of E. coli K-12 is a strand- and sequence-specific DNA mismatch endonuclease. Nature 1991;353:776–778 [CrossRef][PubMed]
    [Google Scholar]
  9. Laging M, Lindner E, Fritz HJ, Kramer W. Repair of hydrolytic DNA deamination damage in thermophilic bacteria: cloning and characterization of a Vsr endonuclease homolog from Bacillus stearothermophilus. Nucleic Acids Res 2003;31:1913–1920 [CrossRef][PubMed]
    [Google Scholar]
  10. Kwiatek A, Luczkiewicz M, Bandyra K, Stein DC, Piekarowicz A. Neisseria gonorrhoeae FA1090 carries genes encoding two classes of Vsr endonucleases. J Bacteriol 2010;192:3951–3960 [CrossRef][PubMed]
    [Google Scholar]
  11. Tsutakawa SE, Morikawa K. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease. Nucleic Acids Res 2001;29:3775–3783 [CrossRef][PubMed]
    [Google Scholar]
  12. Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N et al. Crystallographic and functional studies of very short patch repair endonuclease. Mol Cell 1999;3:621–628 [CrossRef][PubMed]
    [Google Scholar]
  13. Tzeng YL, Stephens DS. Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect 2000;2:687–700 [CrossRef][PubMed]
    [Google Scholar]
  14. Kwiatek A, Kobes M, Olejnik K, Piekarowicz A. DNA methyltransferases from Neisseria meningitidis and Neisseria gonorrhoeae FA1090 associated with mismatch nicking endonucleases. Microbiology 2004;150:1713–1722 [CrossRef][PubMed]
    [Google Scholar]
  15. Claus H, Friedrich A, Frosch M, Vogel U. Differential distribution of novel restriction-modification systems in clonal lineages of Neisseria meningitidis. J Bacteriol 2000;182:1296–1303 [CrossRef][PubMed]
    [Google Scholar]
  16. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al. The epigenomic landscape of prokaryotes. PLoS Genet 2016;12:e1005854 [CrossRef][PubMed]
    [Google Scholar]
  17. Bandaru B, Wyszynski M, Bhagwat AS. HpaII methyltransferase is mutagenic in Escherichia coli. J Bacteriol 1995;177:2950–2952 [CrossRef][PubMed]
    [Google Scholar]
  18. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  19. Johnson KA. Transient state kinetic analysis of enzyme reaction pathways. The Enzymes 1992;20:1–61[CrossRef]
    [Google Scholar]
  20. Elliott SL, Brazier J, Cosstick R, Connolly BA. Mechanism of the Escherichia coli DNA T:G-mismatch endonuclease (Vsr protein) probed with thiophosphate-containing oligodeoxynucleotides. J Mol Biol 2005;353:692–703 [CrossRef][PubMed]
    [Google Scholar]
  21. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  23. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11:595 [CrossRef][PubMed]
    [Google Scholar]
  24. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 2003;31:1805–1812 [CrossRef][PubMed]
    [Google Scholar]
  25. Bandaru B, Gopal J, Bhagwat AS. Overproduction of DNA cytosine methyltransferases causes methylation and C → T mutations at non-canonical sites. J Biol Chem 1996;271:7851–7859[PubMed][CrossRef]
    [Google Scholar]
  26. Cohen HM, Tawfik DS, Griffiths AD. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase. Nucleic Acids Res 2002;30:3880–3885 [CrossRef][PubMed]
    [Google Scholar]
  27. Saunders NJ, Snyder LA. The minimal mobile element. Microbiology 2002;148:3756–3760 [CrossRef][PubMed]
    [Google Scholar]
  28. Yang H, Fitz-Gibbon S, Marcotte EM, Tai JH, Hyman EC et al. Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 2000;182:1272–1279 [CrossRef][PubMed]
    [Google Scholar]
  29. Horst JP, Fritz HJ. Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: dna mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF. Embo J 1996;15:5459–5469[PubMed]
    [Google Scholar]
  30. Barrett TE, Savva R, Panayotou G, Barlow T, Brown T et al. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 1998;92:117–129[PubMed][CrossRef]
    [Google Scholar]
  31. Davidsen T, Tuven HK, Bjørås M, Rødland EA, Tønjum T. Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J Bacteriol 2007;189:5728–5737 [CrossRef][PubMed]
    [Google Scholar]
  32. Davidsen T, Bjørås M, Seeberg EC, Tønjum T. Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol 2005;187:2801–2809 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000492
Loading
/content/journal/micro/10.1099/mic.0.000492
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error